Advertisement

Numerische Mathematik

, Volume 126, Issue 4, pp 741–770 | Cite as

Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps

  • N. SpillaneEmail author
  • V. Dolean
  • P. Hauret
  • F. Nataf
  • C. Pechstein
  • R. Scheichl
Article

Abstract

Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property.

Keywords

Coarse spaces Overlapping Schwarz method Two-level methods Generalized eigenvectors Problems with large coefficient variation 

Mathematics Subject Classification (2000)

65F10 65N22 65N30 65N55 

References

  1. 1.
    Anderson, E., Bai, Z., Bischof, C.: LAPACK Users’ guide, vol. 9. Society for Industrial Mathematics (1999)Google Scholar
  2. 2.
    Brezina, M., Heberton, C., Mandel, J., Vaněk, P.: An iterative method with convergence rate chosen a priori. Technical Report 140, University of Colorado Denver, CCM, University of Colorado Denver : Presented at the 1998 Copper Mountain Conference on Iterative Methods, April (1999, 1998)Google Scholar
  3. 3.
    Chartier, T., Falgout, R.D., Henson, V.E., Jones, J., Manteuffel, T., McCormick, S., Ruge, J., Vassilevski, P.S.: Spectral AMGe (\(\rho \)AMGe). SIAM J. Sci. Comput. 25(1), 1–26 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chevalier, C., Pellegrini, F.: PT-SCOTCH: a tool for efficient parallel graph ordering. Parallel Comput. 6–8(34), 318–331 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dohrmann, C.R., Widlund, O.B.: An overlapping Schwarz algorithm for almost incompressible elasticity. SIAM J. Numer. Anal. 47(4), 2897–2923 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dohrmann, C.R., Widlund, O.B.: Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity. Int. J. Numer. Method Eng. 82(2), 157–183 (2010)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Dolean, V., Nataf, F., Scheichl, R., Spillane, N.: Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12(4), 391–414 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dolean, V., Nataf, F., Spillane, N., Xiang, H.: A coarse space construction based on local Dirichlet to Neumann maps. SIAM J. Sci. Comput. 33, 1623–1642 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dryja, M., Sarkis, M.V., Widlund, O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3), 313–348 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dryja, M., Smith, B.F., Widlund, O.B.: Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal. 31(6), 1662–1694 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dryja, Maksymilian, Widlund, Olof B.: Domain decomposition algorithms with small overlap. SIAM J. Sci. Comput. 15(3), 604–620 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46(05), 1175–1199 (2012)Google Scholar
  13. 13.
    Efendiev, Y., Galvis, J., Vassilevski, P.S.: Spectral element agglomerate algebraic multigrid methods for elliptic problems with high contrast coefficients. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XIX, Lecture Notes in Computational Science and Engineering, vol. 78, pp. 407–414. Springer, Berlin (2011)Google Scholar
  14. 14.
    Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. Multiscale Model Simul 8(5), 1621–1644 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589–626 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Frédéric Hecht. FreeFem++. Numerical Mathematics and Scientific Computation. Laboratoire J.L. Lions, Université Pierre et Marie Curie, 3.7 edn. http://www.freefem.org/ff++/ (2010)
  18. 18.
    Karypis, G., Kumar, V.: METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report, Department of Computer Science, University of Minnesota. http://glaros.dtc.umn.edu/gkhome/views/metis (1998)
  19. 19.
    Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Lehoucq, R. B., Sorensen, D. C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society for Industrial Mathematics (1998)Google Scholar
  21. 21.
    Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp. 65(216), 1387–1401 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Nataf, F., Xiang, H., Dolean, V.: A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps. C. R. Mathématique 348(21–22), 1163–1167 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Parlett, B.N.: The symmetric eigenvalue problem, vol. 20. Society for Industrial Mathematics (1998)Google Scholar
  24. 24.
    Pechstein, C., Scheichl, R.: Scaling up through domain decomposition. Appl. Anal. 88(10–11), 1589–1608 (2009)Google Scholar
  25. 25.
    Pechstein, C., Scheichl, R.: Weighted Poincaré inequalities. IMA J. Numer. Anal. 33(3), 652–686 (2013)Google Scholar
  26. 26.
    Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial Mathematics (2003)Google Scholar
  27. 27.
    Scheichl, R., Vainikko, E.: Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients. Computing 80(4), 319–343 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Scheichl, R., Vassilevski, P.S., Zikatanov, L.T.: Mutilevel methods for elliptic problems with highly varying coefficients on non-aligned coarse grids. SIAM J. Numer. Anal. 50(3), 1675–1694 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Smith, B. F., Bjørstad, P. E., Gropp, W.: Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (2004)Google Scholar
  30. 30.
    Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust two level domain decomposition preconditioner for systems of PDEs. Comptes Rendus Mathématique 349(23–24), 1255–1259 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Toselli, A., Widlund, O.B.: Domain decomposition methods—algorithms and theory. In: Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)Google Scholar
  32. 32.
    Vassilevski, P.S.: Multilevel block factorization preconditioners. Springer, New York (2008)zbMATHGoogle Scholar
  33. 33.
    Willems, J.: Spectral coarse spaces in robust two-level methods. Technical Report 2012–20, RICAM, Linz (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. Spillane
    • 1
    Email author
  • V. Dolean
    • 2
  • P. Hauret
    • 3
  • F. Nataf
    • 1
  • C. Pechstein
    • 4
  • R. Scheichl
    • 5
  1. 1.Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Pierre et Marie CurieParisFrance
  2. 2.Laboratoire J.-A.. Dieudonné, CNRS UMR 7351Université de Nice-Sophia AntipolisNice Cedex 02France
  3. 3.Centre de Technologie de LadouxManufacture des Pneumatiques MichelinClermont-Ferrand Cedex 09France
  4. 4.Institute of Computational MathematicsJohannes Kepler UniversityLinzAustria
  5. 5.Department of Mathematical SciencesUniversity of BathBathUK

Personalised recommendations