Advertisement

Numerische Mathematik

, Volume 126, Issue 3, pp 441–469 | Cite as

Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime

  • Erwan Faou
  • Katharina Schratz
Article

Abstract

We consider the Klein–Gordon equation in the non-relativistic limit regime, i.e. the speed of light \(c\) tending to infinity. We construct an asymptotic expansion for the solution with respect to the small parameter depending on the inverse of the square of the speed of light. As the first terms of this asymptotic can easily be simulated our approach allows us to construct numerical algorithms that are robust with respect to the large parameter \(c\) producing high oscillations in the exact solution.

Mathematics Subject Classification (2000)

35C20 65M12 35L05 

Notes

Acknowledgments

We are grateful to Christian Lubich for his helpful comments, and to Markus Penz for fruitful discussions during the preparation of this work.

References

  1. 1.
    Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys. 234, 253–283 (2003)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Num. Math. 120, 189–229 (2012)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bourgain, J.: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6, 201–230 (1996)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bjorken, J.D., Drell, S.: Relativistic Quantum Fields. McGraw-Hill, New York (1965)MATHGoogle Scholar
  5. 5.
    Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. Wiley-Interscience, New York (1959)Google Scholar
  6. 6.
    Brenner, P., Wahl, W.: Global classical solutions of nonlinear wave equations. Math. Z. 176, 87–121 (1981)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003)Google Scholar
  8. 8.
    Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of nonlinear wave equations. Numer. Math. 110, 113–143 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Engquist, B., Fokas, A., Hairer, E., Iserles, A.: Highly Oscillatory Problems. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Faou, E.: Geometric numerical integration and Schrödinger equations. Zurich lectures in advanced mathematics. European Mathematical Society (EMS), Zürich (2012)Google Scholar
  11. 11.
    Faou, E., Grébert, B.: Hamiltonian interpolation of splitting approximations for nonlinear PDEs. Found. Comput. Math. 11, 381–415 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Faou, E., Grébert, B., Paturel, E.: Birkhoff normal form for splitting methods applied to semi linear Hamiltonian PDEs. Part I: finite dimensional discretization. Numer. Math. 114, 429–458 (2010)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Faou, E., Grébert, B., Paturel, E.: Birkhoff normal form for splitting methods applied to semi linear Hamiltonian PDEs. Part II: abstract splitting. Numer. Math. 114, 459–490 (2010)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Ginibre, J., Velo, G.: The global Cauchy problem for the non linear Klein–Gordon equation. Math. Z. 189, 487–505 (1985)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2001)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)Google Scholar
  17. 17.
    Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Jiménez, S., Vazquez, L.: Analysis of four numerical schemes for a nonlinear Klein–Gordon equation. Appl. Math. Comput. 35, 61–94 (1990)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Machihara, S., Masmoudi, N., Nakanishi, K.: Nonrelativistic limit in the energy space for nonlinear Klein–Gordon equations. Math. Ann. 322, 603–621 (2002)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Masmoudi, N., Nakanishi, K.: From nonlinear Klein–Gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann. 324, 359–389 (2002)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Pascual, P.J., Jiménez, S., Vazquez, L.: Numerical simulations of a nonlinear Klein–Gordon model. Lect. Notes Phys. 448, 211–270 (1995)CrossRefGoogle Scholar
  23. 23.
    Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica, 6, 437–483 (1997)Google Scholar
  24. 24.
    Sakurai, J.J.: Advanced Quantum Mechanics. Addison Wesley, Reading (1967)Google Scholar
  25. 25.
    Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28, 271–278 (1978)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Tsutsumi, M.: Nonrelativistic approximation of nonlinear Klein–Gordon equations in two space dimensions. Nonlinear Anal. 8, 637–643 (1984)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.INRIA and ENS Cachan BretagneBruzFrance

Personalised recommendations