Numerische Mathematik

, Volume 124, Issue 4, pp 753–781 | Cite as

Discontinuous Galerkin method for hyperbolic equations involving \(\delta \)-singularities: negative-order norm error estimates and applications

  • Yang Yang
  • Chi-Wang ShuEmail author


In this paper, we develop and analyze discontinuous Galerkin (DG) methods to solve hyperbolic equations involving \(\delta \)-singularities. Negative-order norm error estimates for the accuracy of DG approximations to \(\delta \)-singularities are investigated. We first consider linear hyperbolic conservation laws in one space dimension with singular initial data. We prove that, by using piecewise \(k\)th degree polynomials, at time \(t\), the error in the \(H^{-(k+2)}\) norm over the whole domain is \((k+1/2)\)th order, and the error in the \(H^{-(k+1)}(\mathbb R \backslash \mathcal R _t)\) norm is \((2k+1)\)th order, where \(\mathcal R _t\) is the pollution region due to the initial singularity with the width of order \(\mathcal O (h^{1/2} \log (1/h))\) and \(h\) is the maximum cell length. As an application of the negative-order norm error estimates, we convolve the numerical solution with a suitable kernel which is a linear combination of B-splines, to obtain \(L^2\) error estimate of \((2k+1)\)th order for the post-processed solution. Moreover, we also obtain high order superconvergence error estimates for linear hyperbolic conservation laws with singular source terms by applying Duhamel’s principle. Numerical examples including an acoustic equation and the nonlinear rendez-vous algorithms are given to demonstrate the good performance of DG methods for solving hyperbolic equations involving \(\delta \)-singularities.

Mathematics Subject Classification

65M60 65M15 


  1. 1.
    Bramble, J.H., Schatz, A.H.: High order local accuracy by averaging in the finite element method. Math. Comput. 31, 94–111 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Canuto, C., Fagnani, F., Tilli, P.: An Eulerian approach to the analysis of Rendez-vous algorithms. In: Chung, M.J., Misra, P. (eds.) 17th IFAC World Congress 2008, vol. 17, Part 1. Curran, Red Hook, New York (2009)Google Scholar
  3. 3.
    Chalaby, A.: On convergence of numerical schemes for hyperbolic conservation laws with stiff source terms. Math. Comput. 66, 527–545 (1997)CrossRefGoogle Scholar
  4. 4.
    Ciarlet, P.G.: Finite Element Method For Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  5. 5.
    Cockburn, B.: A Introduction to the discontinuous Galerkin methods for convection dominated problems. In: Barth, T., Deconink, H. (eds.) High-Order Method for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 69–224. Springer, Berlin (1999)Google Scholar
  6. 6.
    Cockburn, B., Guzmán, J.: Error estimate for the Runge-Kutta discontinuous Galerkin method for the transport equation with discontinuous initial data. SIAM J. Numer. Anal. 46, 1364–1398 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cockburn, B., Luskin, M., Shu, C.W., Süli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)zbMATHGoogle Scholar
  10. 10.
    Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Greenberg, J.M., Leroux, A.Y., Baraille, R., Noussair, A.: Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34, 1980–2007 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hou, S., Liu, X.D.: Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method. J. Sci. Comput. 31, 127–151 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Jiang, G.S., Shu, C.W.: On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62, 531–538 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    John, F.: Partial different equations. Springer, New York (1971)CrossRefGoogle Scholar
  17. 17.
    Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285–312 (1984)zbMATHCrossRefGoogle Scholar
  18. 18.
    Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986)zbMATHCrossRefGoogle Scholar
  19. 19.
    Johnson, C., Schatz, A., Walhbin, L.: Crosswind smear and pointwise errors in streamline diffusion finite element methods. Math. Comput. 49, 25–38 (1987)zbMATHCrossRefGoogle Scholar
  20. 20.
    Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. Notes on Numerical Fluid Mechanics, vol. 45, pp. 117–138. Vieweg, Braunschweig (1993)Google Scholar
  21. 21.
    LeVeque, R.J., Yee, H.C.: A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86, 187–210 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Noussair, A.: Analysis of nonlinear resonance in conservation laws with point sources and well-balanced scheme. Stud. Appl. Math. 104, 313–352 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    de Oliveira, P., Santos, J.: On a class of high resolution methods for solving hyperbolic conservation laws with source terms. In: Sequeira, A., da Veiga, H.B., Videman, J.H. (eds.) Applied Nonlinear Analysis, pp. 432–445. Kluwer academic publishers, New York (1999)Google Scholar
  24. 24.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the Neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM (1973)Google Scholar
  25. 25.
    Ryan, J.K., Cockburn, B.: Local derivative post-processing for the discontinuous Galerkin method. J. Comput. Phys. 228, 8642–8664 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ryan, J.K., Shu, C.W.: On a one-sided post-processing technique for the discontinuous Galerkin methods. Methods Appl. Anal. 10, 295–308 (2003)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Santos, J., de Oliveira, P.: A converging finite volume scheme for hyperbolic conservation laws with source terms. J. Comput. Appl. Math. 111, 239–251 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Schroll, H.J., Winther, R.: Finite-difference Schemes for scalar conservation laws with source terms. IMA J. Numer. Anal. 16, 201–215 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Slingerland, P.V., Ryan, J.K., Vuik, C.: Position-dependent smooth-increasing accuracy-conserving (SIAC) filtering for improving discontinuous Galerkin solutions. SIAM J. Sci. Comput. 33, 802–825 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Walfisch, D., Ryan, J.K., Kirby, R.M., Haimes, R.: One-sided smoothness-increasing accuracy-conserving filtering for enhanced streamline integration through discontinuous fields. J. Sci. Comput. 38, 164–184 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhang, Q., Shu, C.W.: Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for linear hyperbolic equation in one-dimension with discontinuous initial data. Numerische Mathematik. (2013, submitted)Google Scholar
  32. 32.
    Zhang, X., Shu, C.W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations