Numerische Mathematik

, Volume 124, Issue 3, pp 441–470 | Cite as

Low rank methods for a class of generalized Lyapunov equations and related issues

  • Peter Benner
  • Tobias Breiten


In this paper, we study possible low rank solution methods for generalized Lyapunov equations arising in bilinear and stochastic control. We show that under certain assumptions one can expect a strong singular value decay in the solution matrix allowing for low rank approximations. Since the theoretical tools strongly make use of a connection to the standard linear Lyapunov equation, we can even extend the result to the \(d\)-dimensional case described by a tensorized linear system of equations. We further provide some reasonable extensions of some of the most frequently used linear low rank solution techniques such as the alternating directions implicit (ADI) iteration and the Krylov-Plus-Inverted-Krylov (K-PIK) method. By means of some standard numerical examples used in the area of bilinear model order reduction, we will show the efficiency of the new methods.

Mathematics Subject Classification (2000)

15A24 93A15 


  1. 1.
    Antoulas, A., Sorensen, D., Zhou, Y.: On the decay rate of Hankel singular values and related issues. Syst. Control Lett. 46(5), 323–342 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Beckermann, B.: An error analysis for rational Galerkin projection applied to the Sylvester equation. SIAM J. Numer. Anal. 49, 2430 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Benner, P., Breiten, T.: On \({H}_{2}\)-model reduction of linear parameter-varying systems. Proc. Appl. Math. Mech. 11(1), 805–806 (2011). doi:  10.1002/pamm.201110391
  4. 4.
    Benner, P., Breiten, T.: On optimality of interpolation-based low-rank approximations of large-scale matrix equations. MPI Magdeburg Preprints MPIMD/11-10 (2011). Available from
  5. 5.
    Benner, P., Breiten, T.: Interpolation-based \({H}_{2}\)-model reduction of bilinear control systems. SIAM J. Matrix Anal. Appl. 33(3), 859–885 (2012)Google Scholar
  6. 6.
    Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. 49(2), 686–711 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Linear Algebra Appl. 15(9), 755–777 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Benner, P., Li, R., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233(4), 1035–1045 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Benner, P., Saak, J.: Linear-quadratic regulator design for optimal cooling of steel profiles. Tech. Rep. SFB393/05-05, Sonderforschungsbereich 393 Parallele Numerische Simulation für Physik und Kontinuumsmechanik, TU Chemnitz, 09107 Chemnitz, FRG (2005). Available from
  10. 10.
    Condon, M., Ivanov, R.: Krylov subspaces from bilinear representations of nonlinear systems. COMPEL 26, 11–26 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D’Alessandro, P., Isidori, A., Ruberti, A.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control Optim. 12(3), 517–535 (1974)Google Scholar
  12. 12.
    Damm, T.: Rational Matrix Equations in Stochastic Control, vol. 297. Springer, Berlin (2004)zbMATHGoogle Scholar
  13. 13.
    Damm, T.: Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations. Numer. Linear Algebra Appl. 15(9), 853–871 (2008)Google Scholar
  14. 14.
    Dorissen, H.: Canonical forms for bilinear systems. Syst. Control Lett. 13(2), 153–160 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Druskin, V., Knizhnerman, L., Simoncini, V.: Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SIAM J. Numer. Anal. 49, 1875–1898 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Eppler, A.K., Bollhöfer, M.: An alternative way of solving large Lyapunov equations. Proc. Appl. Math. Mech. 10(1), 547–548. doi: 10.1002/pamm.201010266
  18. 18.
    Eppler, A., Bollhöfer, M.: A structure preserving FGMRES method for solving large Lyapunov equations. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010, Mathematics in Industry, vol. 17, pp. 131–136. Springer, Berlin (2012). doi: 10.1007/978-3-642-25100-9-15
  19. 19.
    Flagg, G.M., Gugercin, S.: On the ADI method for the Sylvester equation and the optimal-H2 points. Appl. Numer. Math. 64, 50–58 (2013). doi: 10.1016/j.apnum.2012.10.001 Google Scholar
  20. 20.
    Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72(3–4), 247–265 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Grasedyck, L.: Existence of a low rank or \(\cal {H}\)-matrix approximant to the solution of a sylvester equation. Numer. Linear Algebra Appl. 11(4), 371–389 (2004). doi: 10.1002/nla.366
  22. 22.
    Gray, W., Mesko, J.: Energy functions and algebraic Gramians for bilinear systems. In: Preprints of the 4th IFAC Nonlinear Control Systems Design, Symposium, pp. 103–108 (1998)Google Scholar
  23. 23.
    Gugercin, S., Antoulas, A., Beattie, S.: \({H}_{2}\) model reduction for large-scale dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008)Google Scholar
  24. 24.
    Hartmann, C., Zueva, A., Schäfer-Bung, B.: Balanced model reduction of bilinear systems with applications to positive systems (2010) (Submitted)Google Scholar
  25. 25.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  26. 26.
    Jaimoukha, I., Kasenally, E.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31, 227–251 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Jbilou, K., Riquet, A.J.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415(2–3), 344–358 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). doi: 10.1137/07070111X MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31(4), 1688–1714 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kressner, D., Tobler, C.: Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue problems. CMAM 11(3), 363–381 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst. Control Lett. 40(2), 139–144 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Rugh, W.: Nonlinear System Theory. The Johns Hopkins University Press, Baltimore (1982)Google Scholar
  35. 35.
    Saad, Y.: Numerical solution of large Lyapunov equation. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C.M. (eds.) Signal Processing, Scattering, Operator Theory and Numerical Methods, pp. 503–511. Birkhauser, Basel (1990)Google Scholar
  36. 36.
    Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Sorensen, D., Zhou, Y.: Bounds on eigenvalue decay rates and sensitivity of solutions to Lyapunov equations. Tech. Rep. TR02-07, Dept. of Comp. Appl. Math., Rice University, Houston, TX (2002). Available online from
  38. 38.
    Stenger, F.: Numerical methods based on Sinc and analytic functions. In: Springer Series in Computational Mathematics, vol. 20. Springer, New York (1993)Google Scholar
  39. 39.
    Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 107, 87–90 (1988)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wachspress, E.: The ADI model problem (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Computational Methods in Systems and Control TheoryMax Planck Institute for Dynamics of Complex Technical Systems MagdeburgGermany

Personalised recommendations