Numerische Mathematik

, Volume 123, Issue 4, pp 607–628 | Cite as

A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary

  • August JohanssonEmail author
  • Mats G. Larson


We present a discontinuous Galerkin method, based on the classical method of Nitsche, for elliptic problems with an immersed boundary representation on a structured grid. In such methods very small elements typically occur at the boundary, leading to breakdown of the discrete coercivity as well as numerical instabilities. In this work we propose a method that avoids using very small elements on the boundary by associating them to a neighboring element with a sufficiently large intersection with the domain. This construction allows us to prove the crucial inverse inequality that leads to a coercive bilinear form and as a consequence we obtain optimal order a priori error estimates. Furthermore, we prove a bound of the condition number of the stiffness matrix. All the results are valid for polynomials of arbitrary order. We also discuss the implementation of the method and present numerical examples in three dimensions.

Mathematics Subject Classification (2000)

65M60 65M12 


  1. 1.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Burman, E.: Ghost penalty. Comptes Rendus Mathematique 348, 1217–1220 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Burman, E., Hansbo, P.: An interior-penalty-stabilized Lagrange multiplier method for the finite-element solution of elliptic interface problems. IMA J. Numer. Anal. 30, 870–885 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng. 199(4144), 2680–2686 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cockburn, B., Karniadakis, G., Shu, C.W. (eds.): Discontinuous Galerkin methods–theory. In: Computation and Applications, LNCS, vol. 11. Springer, Berlin (1994)Google Scholar
  8. 8.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Frisken, S., Perry, R.: Simple and efficient traversal methods for quadtrees and octrees. JGT 7(3) (2002)Google Scholar
  10. 10.
    Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Method. Appl. M 191(47–48), 5537–5552 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hansbo, A., Hansbo, P., Larson, M.G.: A finite element method on composite grids based on Nitsche’s method. ESAIM Math. Model. Numer. 37(3), 495–514 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Huh, J.S., Sethian, J.A.: Exact sub-grid interface correction schemes for elliptic interface problems. Proc. Natl. Acad. Sci. 105, 9874–9879 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface construction algorithm. Comput. Graphics 21, 163–169 (1978)Google Scholar
  14. 14.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Hamburg 36, 9–15 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Reusken, A.: Analysis of an extended pressure finite element space for two-phase incompressible flows. Comput. Vis. Sci. 11, 293–305 (2008)Google Scholar
  16. 16.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  17. 17.
    Sevilla, R., Fernández-Méndez, S., Huerta, A.: NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Eng. 76(1), 56–83 (2008)zbMATHCrossRefGoogle Scholar
  18. 18.
    Sukumar, N., Chopp, D.L., Mos, N., Belytschko, T.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190(46–47), 6183–6200 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Zunino, P., Cattaneo, L., Colciago, C.M.: An unfitted interface penalty method for the numerical approximation of contrast problems. Appl. Numer. Math. 61(10), 1059–1076 (2011)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsLawrence Berkeley National Laboratory, University of CaliforniaBerkeleyUSA
  2. 2.Department of MathematicsUmeå UniversityUmeåSweden

Personalised recommendations