Numerische Mathematik

, Volume 123, Issue 2, pp 291–308 | Cite as

Optimal adaptive nonconforming FEM for the Stokes problem

  • Carsten Carstensen
  • Daniel Peterseim
  • Hella Rabus


This paper presents an optimal nonconforming adaptive finite element algorithm and proves its quasi-optimal complexity for the Stokes equations with respect to natural approximation classes. The proof does not explicitly involve the pressure variable and follows from a novel discrete Helmholtz decomposition of deviatoric functions.

Mathematics Subject Classification (2000)

Primary 65N12 65N15 65N30 65N50 65Y20 


  1. 1.
    Brenner, S.C., Carstensen, C.: Encyclopedia of computational mechanics, chapter 4. In: Finite Element Methods. Wiley, New York (2004)Google Scholar
  2. 2.
    Binev, P., Dahmen, W., De Vore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New-York (1991)zbMATHCrossRefGoogle Scholar
  4. 4.
    Becker, R., Mao, S.: An optimally convergent adaptive mixed finite element method. Numer. Math. 111, 35–54 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Becker, R., Mao, S.: Adaptive nonconforming finite elements for the Stokes equations. SIAM J. Numer. Anal. 49(3), 970–991 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bänsch, E., Morin, P., Nochetto, R.H.: An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition. SIAM J. Numer. Anal. 40(4), 1207–1229 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Becker, R., Mao, S., Shi, Z.: A convergent nonconforming adaptive finite element method with quasi-optimal complexity. SIAM J. Numer. Anal. 47(6), 4639–4659 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  9. 9.
    Brenner, S.C., Scott, L.R.: The Mathematical theory of finite element methods, vol. 15, 3rd edn. In: Texts in Applied Mathematics. Springer, New York (2008)Google Scholar
  10. 10.
    Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103(2), 251–266 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Carstensen, C., Hoppe, R.H.W.: Error reduction and convergence for an adaptive mixed finite element method. Math. Comp. 75(255):1033–1042 (electronic) (2006)Google Scholar
  12. 12.
    Cascon, J.M., Kreuzer, Ch., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Carstensen, C., Peterseim, D., Schedensack, M: Comparison results of three first-order finite element methods for the Poisson model problem. Preprint 831, DFG Research Center Matheon Berlin (2011)Google Scholar
  14. 14.
    Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(R-3), 33–75 (1973)MathSciNetGoogle Scholar
  15. 15.
    Carstensen, C., Rabus, H.: An optimal adaptive mixed finite element method. Math. Comp. 80(274), 649–667 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Carstensen, C., Rabus, H.: The adaptive nonconforming fem for the pure displacement problem in linear elasticity is optimal and robust. SIAM J. Numer. Anal., accepted (2012)Google Scholar
  17. 17.
    Dari, E., Durán, R., Padra, C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64(211), 1017–1033 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp. 79(272), 2169–2189 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hu, J., Shi, Z., Xu, J.: Convergence and optimality of the adaptive morley element method. Numerische Mathematik 1–22 (2012). doi: 10.1007/s00211-012-0445-0
  21. 21.
    Hu, J., Xu, J.: Convergence of adaptive conforming and nonconforming finite element methods for the perturbed Stokes equation. Research Report. School of Mathematical Sciences and Institute of Mathematics, Peking University (2007). Available at
  22. 22.
    Hu, J., Xu, J.: Convergence and optimality of the adaptive nonconforming linear element method for the Stokes problem. J. Sci. Comput. 1–24 (2012). doi: 10.1007/s10915-012-9625-4
  23. 23.
    Morin, P., Nochetto, R. H., Siebert, K. G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4):631–658 (electronic) (2003) 2002. Revised reprint of “Data oscillation and convergence of adaptive FEM”. SIAM J. Numer. Anal. 38(2):466–488 (2000) (electronic); MR1770058 (2001g:65157)Google Scholar
  24. 24.
    Mao, S., Zhao, X., Shi, Z.: Convergence of a standard adaptive nonconforming finite element method with optimal complexity. Appl. Numer. Math. 60, 673–688 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Rabus, H.: A natural adaptive nonconforming FEM of quasi-optimal complexity. Comput. Methods Appl. Math. 10(3), 315–325 (2010)MathSciNetGoogle Scholar
  26. 26.
    Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Carsten Carstensen
    • 1
    • 2
  • Daniel Peterseim
    • 1
  • Hella Rabus
    • 1
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Computational Science and EngineeringYonsei UniversitySeoulKorea

Personalised recommendations