Advertisement

Numerische Mathematik

, Volume 123, Issue 2, pp 259–290 | Cite as

Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements

  • John A. EvansEmail author
  • Thomas J. R. Hughes
Article

Abstract

We derive new trace inequalities for NURBS-mapped domains. In addition to Sobolev-type inequalities, we derive discrete trace inequalities for use in NURBS-based isogeometric analysis. All dependencies on shape, size, polynomial degree, and the NURBS weighting function are precisely specified in our analysis, and explicit values are provided for all bounding constants appearing in our estimates. As hexahedral finite elements are special cases of NURBS, our results specialize to parametric hexahedral finite elements, and our analysis also generalizes to T-spline-based isogeometric analysis. We compare the bounding constants appearing in our explicit trace inequalities with numerically computed optimal bounding constants, and we discuss application of our results to a Laplace problem. We finish this paper with a brief exploration of so-called patch-wise trace inequalities for isogeometric analysis.

Mathematics Subject Classification

65N30 65N12 

Notes

Acknowledgments

J.A. Evans and T.J.R. Hughes were partially supported by the Office of Naval Research under Contract No. N00014-08-0992. This support is gratefully acknowledged.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, London (1975)zbMATHGoogle Scholar
  2. 2.
    Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arrieta, J.M., Rodríguez-Bernal, A., Rossi, J.D.: The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary. Proc. R. Soc. Edinb. Sect. A Math. 138, 223–237 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: Theory, algorithms, and computations. Comput. Mech. 43, 3–37 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bazilevs, Y., da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1–60 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bazilevs, Y., Michler, C.M., Calo, V.M., Hughes, T.J.R.: Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196, 4853–4862 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bazilevs, Y., Michler, C.M., Calo, V.M., Hughes, T.J.R.: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199, 780–790 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bebendorf, M.: A note on the Poincaré inequality for convex domains. Zeitschrift für Analysis und ihre Anwendungen 22, 751–756 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138, 213–242 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h-p-k\) refinement in isogeometric analysis. Numerische Mathematik 118, 271–305 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Buffa, A., Sangalli, G., Vázquez, R.: Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Methods Appl. Mech. Eng. 199, 1143–1152 (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Burkhart, D., Hamann, B., Umlauf, G.: Iso-geometric analysis based on Catmull-Clark subdivision solids. Comput. Graph. Forum 29, 1575–1584 (2010)CrossRefGoogle Scholar
  14. 14.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: Toward integration of CAD and FEA. Wiley, New York (2009)Google Scholar
  15. 15.
    Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dorfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local \(h\)-refinement using T-splines. Comput. Methods Appl. Mech. Eng. 199, 264–275 (2010)CrossRefGoogle Scholar
  17. 17.
    Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elements. Comput. Methods Appl. Mech. Eng. 197, 2732–2762 (2008)zbMATHCrossRefGoogle Scholar
  18. 18.
    Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83, 877–898 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Epschteyn, Y., Rivière, B.: Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206, 843–872 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Escobar, J.F.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Evans, J.A., Bazilevs, Y., Babuška, I., Hughes, T.J.R.: \(n\)-widths, sup-infs, and optimality ratios for the \(k\)-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Harari, I., Hughes, T.J.R.: What are \(C\) and \(h\)? Inequalities for the analysis and design of finite element methods. Comput. Methods Appl. Mech. Eng. 97, 157–192 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)zbMATHCrossRefGoogle Scholar
  26. 26.
    Lang, S.: Fundamentals of Differential Geometry. Springer-Verlag, Berlin (1999)zbMATHCrossRefGoogle Scholar
  27. 27.
    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case II. Revista Matemática. Iberoamericana 1, 45–121 (1985)zbMATHCrossRefGoogle Scholar
  28. 28.
    Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T., Hughes, T.J.R.: Robustness of isogeometric structural discretizations under severe mesh distortion. Comput. Methods Appl. Mech. Eng. 199, 357–373 (2010)zbMATHCrossRefGoogle Scholar
  29. 29.
    Nitsche, J.A.: Über ein Variationspringzip zur Lösung von Dirichlet-Problemem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universit at Hamburg 36, 9–15 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Piegl, L., Tiller, W.: The NURBS Book. Springer-Verlag, Berlin (1997)CrossRefGoogle Scholar
  31. 31.
    Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205, 401–407 (2005)zbMATHCrossRefGoogle Scholar
  32. 32.
    Vesser, A., Verfürth, R.: Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. 47, 2387–2405 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Wheeler, M.F.: An elliptic collocation-finite element method with -interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations