Numerische Mathematik

, Volume 122, Issue 2, pp 279–304

A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier–Stokes equations

Article

Abstract

This paper proposes and analyzes a stabilized multi-level finite volume method (FVM) for solving the stationary 3D Navier–Stokes equations by using the lowest equal-order finite element pair without relying on any solution uniqueness condition. This multi-level stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performing one Newton correction step on each subsequent mesh, thus only solving a large linear system. An optimal convergence rate for the finite volume approximations of nonsingular solutions is first obtained with the same order as that for the usual finite element solution by using a relationship between the stabilized FVM and a stabilized finite element method. Then the multi-level finite volume approximate solution is shown to have a convergence rate of the same order as that of the stabilized finite volume solution of the stationary Navier–Stokes equations on a fine mesh with an appropriate choice of the mesh size: \({ h_{j} ~ h_{j-1}^{2}, j = 1,\ldots, J}\) . Finally, numerical results presented validate our theoretical findings.

Mathematics Subject Classification

76D05 65M08 65M12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)MATHGoogle Scholar
  2. 2.
    Bank R.E., Rose D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bochev P., Dohrmann C.R., Gunzburger M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44, 82–101 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brezzi F., Douglas J.: Stabilized mixed methods for the Stokes problem. Numer. Math. 53, 225–235 (1988)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite element approximation of nonlinear problems. Part I: branch of nonsingular solutions. Numer. Math. 36, 1–25 (1980)Google Scholar
  6. 6.
    Cai Z.: On the finite volume method. Numer. Math. 58, 713–735 (1991)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Carstensen C., Lazarov R., Tomov S.: Explcit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chen Z.: Finite Element Methods and Their Applications. Springer, Heidelberg (2005)MATHGoogle Scholar
  9. 9.
    Chen Z., Li R., Zhou A.: A note on the optimal L 2-estimate of finite volume element method. Adv. Comput. Math. 16, 291–303 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chou S.H.: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comput. 66, 85–104 (1997)MATHCrossRefGoogle Scholar
  11. 11.
    Chou S.H., Li Q.: Error estimates in L 2, H 1 and L i in co-volume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69, 103–120 (2000)MathSciNetMATHGoogle Scholar
  12. 12.
    Chatzipantelidis P.: A finite volume method based on the Crouzeix–Raviart element for elliptic PDEs in two dimensions. Numer. Math. 82, 409–432 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Chatzipantelidis P., Lazarov R.D., Thomée V.: Error estimates for a finite volume method for parabolic equations in convex polygonal domains. Numer. Methods PDEs 20, 650–674 (2004)MATHCrossRefGoogle Scholar
  14. 14.
    Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATHGoogle Scholar
  15. 15.
    Ewing R.E., Lazarov R.D., Lin Y.: Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ. 16, 285–311 (2000)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ewing R.E., Lin T., Lin Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Girault V., Raviart P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)MATHCrossRefGoogle Scholar
  18. 18.
    He Y.N., Li J.: A stabilized finite element method based on local polynomial pressure projection for the stationary Navier–Stokes equation. Appl. Numer. Math. 58, 1503–1514 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    He Y.N.: Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    He Y.N., Liu K., Sun W.: Multi-level spectral galerkin method for the Navier–Stokes problem I: spatial discretization. Numer. Math. 111, 501–522 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Heywood J.G., Rannacher R.: Finite-element approximations of the nonstationary Navier–Stokes problem. Part I: Regularity of solutions and second-order spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Layton W.: A two level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 26, 33–38 (1993)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Layton W., Lenferink W.: A multilevel mesh independence principle for the Navier–Stokes equations. SIAM J. Numer. Anal. 33, 17–30 (1996)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Layton W., Lee H.K., Peterson J.: Numerical solution of the stationary Navier–Stokes equations using a multilevel finite element method. SIAM J. Sci. Comput. 20, 1–12 (1998)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Li J., Chen Z.: A New Stabilized Finite Volume Method for the Stationary Stokes Equations. Adv. Comput. Math. 30, 141–152 (2009)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Li, J., Chen, Z.: Stability and convergence of a stabilized finite volume method for the transient Navier–Stokes equations. Adv. Comp. Math. (2012, in press)Google Scholar
  27. 27.
    Li, J., Chen, Z.: Optimal and maximum-norm analysis of a finite volume method for the stationary Navier–Stokes equations with large data (2012, in press)Google Scholar
  28. 28.
    Li J., He Y.N.: A stabilized finite element method based on two local Gauss integrations for the stokes equations. J. Comput. Appl. Math. 214, 58–65 (2008)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Li R.: Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24, 77–88 (1987)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Li R., Chen Z., Wu W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)MATHGoogle Scholar
  31. 31.
    Li J., He Y.N., Xu H.: A multi-level stabilized finite element method for the stationary Navier–Stoke equations. Comput. Methods Appl. Mech. Eng. 196, 2852–2862 (2007)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Li J., Shen L., Chen Z.: Convergence and stability of a stabilized finite volume method for the stationary Navier–Stokes equations. BIT Numer. Math. 50, 823–842 (2010)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Li R., Zhu P.: Generalized difference methods for second order elliptic partial differential equations (I)-triangle grids. Numer. Math. J. Chin. Univ. 2, 140–152 (1982)Google Scholar
  34. 34.
    Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1984)Google Scholar
  35. 35.
    Wang J., Wang Y., Ye X.: A new finite volume method for the stokes problems. Int. J. Numer. Anal. Model. 7, 281–302 (2009)MathSciNetGoogle Scholar
  36. 36.
    Xu J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Xu J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1778 (1996)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Xu J., Zou Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Xu, J., Zhu, Y., Zou, Q.: New adaptive finite volume methods and convergence analysis (2012, in press)Google Scholar
  40. 40.
    Ye X.: On the relationship between finite volume and finite element methods applied to the Stokes equations. Numer. Mathods Partial Differ. Equ. 5, 440–453 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsBaoji University of Arts and SciencesBaojiPeople’s Republic of China
  2. 2.Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryAlbertaCanada
  3. 3.Center for Computational Geosciences, College of Mathematics and StatisticsXian Jiaotong UniversityXianPeople’s Republic of China

Personalised recommendations