Numerische Mathematik

, Volume 122, Issue 1, pp 133–167

# Iterative methods for the solution of a singular control formulation of a GMWB pricing problem

Article

## Abstract

Discretized singular control problems in finance result in highly nonlinear algebraic equations which must be solved at each timestep. We consider a singular stochastic control problem arising in pricing a guaranteed minimum withdrawal benefit (GMWB), where the underlying asset is assumed to follow a jump diffusion process. We use a scaled direct control formulation of the singular control problem and examine the conditions required to ensure that a fast fixed point policy iteration scheme converges. Our methods take advantage of the special structure of the GMWB problem in order to obtain a rapidly convergent iteration. The direct control method has a scaling parameter which must be set by the user. We give estimates for bounds on the scaling parameter so that convergence can be expected in the presence of round-off error. Example computations verify that these estimates are of the correct order. Finally, we compare the scaled direct control formulation to a formulation based on a block version of the penalty method (Huang and Forsyth in IMA J Numer Anal 32:320–351, 2012). We show that the scaled direct control method has some advantages over the penalty method.

65N06 93C20

## Preview

### References

1. 1.
Andersen L., Andreasen J.: Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Derivatives Res. 4, 231–262 (2000)
2. 2.
Barles G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In: Rogers, L.C.G., Talay, D. (eds) Numerical Methods in Finance, pp. 1–21. Cambridge University Press, Cambridge (1997)Google Scholar
3. 3.
Barles G., Souganidis P.E.: Convergence of approximation schemes for fully nonlinear equations. Asymptotic Anal. 4, 271–283 (1991)
4. 4.
Bertsekas D.P., Tsitsiklis J.: Neuro-Dynamic Programming. Athena, Massachusetts (1996)
5. 5.
Bokanowski O., Maroso S., Zidani H.: Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47, 3001–3026 (2009)
6. 6.
Budhriaja A., Ross K.: Convergent numerical scheme for singular stochastic control with state constraints in a portfolio selection problem. SIAM J. Control Optim. 45, 2169–2206 (2007)
7. 7.
Chen Z., Forsyth P.A.: A numerical scheme for the impulse control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB). Numer. Math. 109, 535–569 (2008)
8. 8.
Chen Z., Vetzal K., Forsyth P.A.: The effect of modelling parameters on the value of GMWB guarantees. Insur. Math. Econ. 43, 165–173 (2008)
9. 9.
Cont R., Tankov P.: Financial Modelling with Jump Processes. Chapman and Hall, London (2004)
10. 10.
Dai M., Kwok Y.K., Zong J.: Guaranteed minimum withdrawal benefit in variable annuities. Math. Finance 18, 595–611 (2008)
11. 11.
d’Halluin Y., Forsyth P.A., Vetzal K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)
12. 12.
Forsyth P.A., Labahn G.: Numerical methods for controlled Hamilton–Jacobi–Bellman PDEs in finance. J. Comput. Finance 11(Winter), 1–44 (2008)Google Scholar
13. 13.
Hindy A., Huang C., Zhu S.: Numerical analysis of a free boundary singular control problem in financial economics. J. Econ. Dyn. Control 21, 297–327 (1997)
14. 14.
Huang, Y.: Numerical methods for pricing a guaranteed minimum withdrawal benefit (GMWB) as a singular control problem. PhD thesis, School of Computer Science, University of Waterloo (2011)Google Scholar
15. 15.
Huang Y., Forsyth P.A.: Analysis of a penalty method for pricing a guaranteed minimum withdrawal benefit (GMWB). IMA J. Numer. Anal. 32, 320–351 (2012)
16. 16.
Huang, Y., Forsyth, P.A., Labahn, G.: Combined fixed point policy iteration for HJB equations in finance. Working paper, University of Waterloo (submitted to SIAM J. Numer. Anal.) (2010)Google Scholar
17. 17.
Kennedy J.S., Forsyth P.A., Vetzal K.R.: Dynamic hedging under jump diffusion with transaction costs. Oper. Res. 57, 541–559 (2009)
18. 18.
Kumar S., Mithiraman K.: A numerical method for solving singular stochastic control problems. Oper. Res. 52, 563–582 (2004)
19. 19.
Kushner H.J., Dupuis P.G: Numerical Methods for Stochastic Control Problems in Continuous Time. Springer, New York (1991)Google Scholar
20. 20.
Merton R.C.: Option pricing when underlying stock returns are discontinuous. J. Financial Econ. 3, 125–144 (1976)
21. 21.
Milevsky M.A., Salisbury T.S.: Financial valuation of guaranteed minimum withdrawal benefits. Insur. Math. Econ. 38, 21–38 (2006)
22. 22.
Munos, R.: Error bounds for approximate policy iteration. In: Proceedings of the 20th international congress on machine learning, pp. 560–567. Washington (2003)Google Scholar
23. 23.
Pham H.: On some recent aspects of stochastic control and their applications. Probability Surv. 2, 506–549 (2005)
24. 24.
Pooley D.M., Forsyth P.A., Vetzal K.R.: Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA J. Numer. Anal. 23, 241–267 (2003)
25. 25.
Stoer J., Bulirsch R.: Introduction to Numerical Analysis. 2nd edn. Springer, Berlin (1993)
26. 26.
Tourin A., Zariphopoulou T. : Viscosity solutions and numerical schemes for investment/consumption models with transaction costs. In: Rogers, L.C.G., Talay, D. (eds) Numerical Methods in Finance, Cambridge University Press, Cambridge (1997)Google Scholar
27. 27.
Varga R.: Matrix Iterative Analysis. Prentice Hall, New Jersey (1961)Google Scholar
28. 28.
Wang I.R., Wan J.W.I., Forsyth P.A.: Robust numerical valuation of European and American options under the CGMY proces. J. Comput. Finance 10(4 Summer), 86–115 (2007)Google Scholar
29. 29.
Wang J., Forsyth P.A.: Maximal use of central differencing for Hamilton–Jacobi–Bellman PDEs in finance. SIAM J. Numer. Anal. 46, 1580–1601 (2008)