Numerische Mathematik

, Volume 121, Issue 4, pp 609–635 | Cite as

Constructing nested bases approximations from the entries of non-local operators

Article

Abstract

In this article, a method for constructing nested bases approximations to large-scale fully populated discretizations of integral operators is introduced. The scheme uses only few of the matrix entries for approximating the whole matrix. In this sense, it is similar to the adaptive cross approximation method. However, its computational complexity is improved.

Mathematics Subject Classification (2000)

41A63 41A80 65D05 65D15 65F05 65F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson C.R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)MATHCrossRefGoogle Scholar
  2. 2.
    Babaev, M.-B.A.: Best approximation by bilinear forms. Mat. Zametki 46(2), 21–33, 158 (1989)Google Scholar
  3. 3.
    Babaev, M.-B. A.: Exact annihilators and their applications in approximation theory. Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 20(1, Math. Mech.), 17–24, 233 (2000)Google Scholar
  4. 4.
    Ballani, J., Grasedyck, L., Kluge, M.: Black Box Approximation of Tensors in Hierarchical Tucker Format. Technical Report 57, Max Planck Institute MiS (2010)Google Scholar
  5. 5.
    Barnes J., Hut P.: A hierarchical \({\mathcal{O}({N} \log{N})}\) force calculation algorithm. Nature 324, 446–449 (1986)CrossRefGoogle Scholar
  6. 6.
    Bebendorf M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bebendorf, M.: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63. Springer, Berlin (2008). ISBN: 978-3-540-77146-3Google Scholar
  8. 8.
    Bebendorf M., Grzhibovskis R.: Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math. Methods Appl. Sci. (MMAS) 29, 1721–1747 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bebendorf M., Kunis S.: Recompression techniques for adaptive cross approximation. J. Integr. Equ. Appl. 21(3), 331–357 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bebendorf M., Rjasanow S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Börm S.: Approximation of integral operators by \({\mathcal{H}^2}\)-matrices with adaptive bases. Computing 74(3), 249–271 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Börm S.: Adaptive variable-rank approximation of general matrices. SIAM J. Sci. Comp. 30(1), 148–168 (2007)MATHCrossRefGoogle Scholar
  13. 13.
    Börm S.: Data-sparse approximation of non-local operator by \({\mathcal{H}^2}\) -matrices. Linear Algebra Appl. 422(2-3), 380–403 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Börm S.: Construction of data-sparse \({\mathcal{H}^2}\) -matrices by hierarchical compression. SIAM J. Sci. Comp. 31(3), 1820–1839 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Börm S., Grasedyck L.: Hybrid cross approximation of integral operators. Numer. Math. 101(2), 221–249 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Brandt A., Lubrecht A.A.: Multilevel matrix multiplication and fast solution of integral equations. J. Comput. Phys. 90(2), 348–370 (1990)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Engquist B., Ying L.: Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput 29(4), 1710–1737 (2007) (electronic)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Fredman M.L., Tarjan R.E.: Fibonacci heaps and their uses in improved network optimization problems. J. ACM 34, 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Giebermann K.: Multilevel approximation of boundary integral operators. Computing 67, 183–207 (2001)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Grasedyck L.: Adaptive recompression of \({\mathcal{H} }\)-matrices for BEM. Computing 74, 205–223 (2005)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Grasedyck L., Hackbusch W.: Construction and arithmetics of \({{\mathcal{H}} }\)-matrices. Computing 70, 295–334 (2003)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Greengard L.F., Rokhlin V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica, 1997. Acta Numerica, vol. 6, pp. 229–269. Cambridge University Press, Cambridge (1997)Google Scholar
  25. 25.
    Gu M., Eisenstat S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Hackbusch W.: A sparse matrix arithmetic based on \({\mathcal{H}}\)-matrices. Part I: Introduction to \({\mathcal{H} }\) -matrices. Computing 62(2), 89–108 (1999)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hackbusch W., Börm S.: Data-sparse approximation by adaptive \({\mathcal{H}^2}\) -matrices. Computing 69(1), 1–35 (2002)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Hackbusch, W., Börm, S.: \({\mathcal{H}^2}\)-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43(1–2), 129–143 (2002) [19th Dundee Biennial Conference on Numerical Analysis (2001)]Google Scholar
  29. 29.
    Hackbusch W., Khoromskij B.N.: A sparse \({\mathcal{H}}\)-matrix arithmetic. Part II: Application to multi-dimensional problems. Computing 64(1), 21–47 (2000)MathSciNetMATHGoogle Scholar
  30. 30.
    Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \({\mathcal{H}^2}\) -matrices. In: Bungartz H.-J., Hoppe R.H.W., Zenger Ch. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)Google Scholar
  31. 31.
    Hackbusch W., Nowak Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Micchelli C.A., Pinkus A.: Some problems in the approximation of functions of two variables and n-widths of integral operators. J. Approx. Theory 24(1), 51–77 (1978)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Oseledets I.V., Tyrtyshnikov E.E.: TT-Cross Approximation for multidimensional arrays. Linear Algebra Appl. 432(5), 70–88 (2010)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Sauer Th., Xu Y.: On multivariate Lagrange interpolation. Math. Comp. 64(211), 1147–1170 (1995)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Schneider J.: Error estimates for two-dimensional cross approximation. J. Approx. Theory 162(9), 1685–1700 (2010)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Schöberl J.: NETGEN—an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visual. Sci 1, 41–52 (1997)MATHCrossRefGoogle Scholar
  37. 37.
    Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1–2), 47–57 (1998) [Toeplitz matrices: structures, algorithms and applications (Cortona, 1996)]Google Scholar
  38. 38.
    Ying L., Biros G., Zorin D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute for Numerical SimulationUniversity of BonnBonnGermany

Personalised recommendations