Numerische Mathematik

, Volume 121, Issue 4, pp 671–703

# Computing quasiconformal maps using an auxiliary metric and discrete curvature flow

• Wei Zeng
• Lok Ming Lui
• Feng Luo
• Tony Fan-Cheong Chan
• Shing-Tung Yau
• David Xianfeng Gu
Article

## Abstract

Surface mapping plays an important role in geometric processing, which induces both area and angular distortions. If the angular distortion is bounded, the mapping is called a quasiconformal mapping (QC-Mapping). Many surface mappings in our physical world are quasiconformal. The angular distortion of a QC mapping can be represented by the Beltrami differentials. According to QC Teichmüller theory, there is a one-to-one correspondence between the set of Beltrami differentials and the set of QC surface mappings under normalization conditions. Therefore, every QC surface mapping can be fully determined by the Beltrami differential and reconstructed by solving the so-called Beltrami equation. In this work, we propose an effective method to solve the Beltrami equation on general Riemann surfaces. The solution is a QC mapping associated with the prescribed Beltrami differential. The main strategy is to define an auxiliary metric (AM) on the domain surface, such that the original QC mapping becomes conformal under the auxiliary metric. The desired QC-mapping can then be obtained by using the conventional conformal mapping method. In this paper, we first formulate a discrete analogue of QC mappings on triangular meshes. Then, we propose an algorithm to compute discrete QC mappings using the discrete Yamabe flow method. To the best of our knowledge, it is the first work to compute the discrete QC mappings for general Riemann surfaces, especially with different topologies. Numerically, the discrete QC mapping converges to the continuous solution as the mesh grid size approaches to 0. We tested our algorithm on surfaces scanned from real life with different topologies. Experimental results demonstrate the generality and accuracy of our auxiliary metric method.

65 52 30

## References

1. 1.
Ahlfors L.: Conformality with respect to Riemannian matrices. Ann. Acad. Sci. Fenn. Ser. 206, 1–22 (1955)
2. 2.
Ahlfors L.: Lectures in Quasiconformal Mappings. Van Nostrand Reinhold, New York (1966)Google Scholar
3. 3.
Ben-Chen M., Gotsman C., Bunin G.: Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum 27(2), 449–458 (2008)
4. 4.
Bers L., Nirenberg L.: On Linear and Nonlinear Elliptic Boundary Value Problems in the Plane, pp. 141–167. Convegno Internazionale Suelle Equaziono Cremeonese, Roma (1955)Google Scholar
5. 5.
Bers L.: Mathematical Aspects of Subcritical and Transonic Gas Dynamics. Wiley, New York (1958)Google Scholar
6. 6.
Bers L.: Quasiconformal mappings, with applications to differential equations, function theory and topology. Am. Math. Soc. Bull. 83(6), 1083–1100 (1977)
7. 7.
Bers L., Nirenberg L.: On a Representation Theorem for Linear Elliptic Systems with Discontinuous Coefficients and its Applications, pp. 111–140. Convegno Internazionale Suelle Equaziono Cremeonese, Roma (1955)Google Scholar
8. 8.
Bobenko, A., Springborn, B., Pinkall, U.: Discrete conformal equivalence and ideal hyperbolic polyhedra (2012, in press)Google Scholar
9. 9.
Bobenko A.I., Springborn B.A.: Variational principles for circle patterns and koebe’s theorem. Trans. Am. Math. Soc. 356, 659–689 (2004)
10. 10.
Bowers, P.L., Hurdal, M.: Planar conformal mapping of piecewise flat surfaces. In: Visualization and Mathematics III, pp. 3–34. Springer, Berlin (2003)Google Scholar
11. 11.
Bucking, U.: On existence and convergence of conformally equivalent triangle meshes for conformal mappings and regular lattices. In: Barrett Memorial Lectures (May 17–21, 2010)Google Scholar
12. 12.
Belinskii P.P., Godunov S.K., Yanenko I.: The use of a class of quasiconformal mappings to construct difference nets in domains with curvilinear boundaries. USSR Comp. Math. Phys. 15, 133–144 (1975)
13. 13.
Carleson L., Gamelin T.: Complex Dynamics. Springer, New York (1993)
14. 14.
Chow B.: The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)
15. 15.
Chow B., Luo F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63(1), 97–129 (2003)
16. 16.
Dai J., Luo W., Jin M., Zeng W., He Y., Yau S.T., Gu X.: Geometric accuracy analysis for discrete surface approximation. Comput. Aided Geom. Des. 24(6), 323–338 (2007)
17. 17.
Daripa P.: On a numerical method for quasiconformal grid generation. J. Comput. Phys. 96, 229–236 (1991)
18. 18.
Daripa P.: A fast algorithm to solve nonhomogeneous Cauchy-Riemann equations in the complex plane. SIAM J. Sci. Stat. Comput. 13(6), 1418–1432 (1992)
19. 19.
Daripa P., Masha D.: An efficient and novel numerical method for quasiconformal mappings of doubly connected domains. Numer. Algorithm 18, 159–175 (1998)
20. 20.
Desbrun M., Meyer M., Alliez P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum (Proc. Eurographics 2002) 21(3), 209–218 (2002)
21. 21.
Farkas H.M., Kra I.: Riemann Surfaces. Springer, Berlin (2004)Google Scholar
22. 22.
Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin (2005)Google Scholar
23. 23.
Gortler S.J., Gotsman C., Thurston D.: Discrete one-forms on meshes and applications to 3D mesh parameterization. Comput. Aided Geom. Des. 23(2), 83–112 (2005)
24. 24.
Gotsman C., Gu X., Sheffer A.: Fundamentals of spherical parameterization for 3D meshes. ACM Trans. Graph. 22(3), 358–363 (2003)
25. 25.
Grimm, C., Hughes, J.F.: Parameterizing N-holed tori. In: IMA Conference on the Mathematics of Surfaces, pp. 14–29 (2003)Google Scholar
26. 26.
Grotzsch H.: Uber die verzerrung bei schlichten nichtkonformen abbildungen und eine damit zusammenh angende erweiterung des picardschen. Rec. Math. 80, 503–507 (1928)Google Scholar
27. 27.
Gu X., He Y., Qin H.: Manifold splines. Graph. Models 68(3), 237–254 (2006)
28. 28.
Gu X., Wang Y., Chan T.F., Thompson P.M., Yau S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)
29. 29.
Gu, X., Yau, S.T.: Global conformal parameterization. In: Symposium on Geometry Processing, pp. 127–137 (2003)Google Scholar
30. 30.
Guggenheimer H.W.: Differential Geometry. Dover Publications, New York (1977)
31. 31.
Hamilton R.S.: Three manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)
32. 32.
Hamilton R.S.: The Ricci flow on surfaces. Math. Gen. Relativ. 71, 237–262 (1988)
33. 33.
Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.E.: Conformal virtual colon flattening. In: Symposium on Solid and Physical Modeling, pp. 85–93 (2006)Google Scholar
34. 34.
Hormann, K., Levy, B., Sheffer, A.: Mesh parameterization. SIGGRAPH 2007 Course Notes 2 (2007)Google Scholar
35. 35.
Jin M., Kim J., Luo F., Gu X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)
36. 36.
Kharevych L., Springerborn B., Schröder P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)
37. 37.
Kalberer F., Nieser M., Polthicr K.: Quadcover—surface parameterization using branched coverings. Comput. Graph. 26(3), 375–384 (2007)
38. 38.
Lavrentjev M.: Sur une classe de representations continues. Rec. Math. 48, 407–423 (1935)Google Scholar
39. 39.
Lehto O., Virtanen K.: Quasiconformal Mapping in the Plane. Springer, Berlin (1973)Google Scholar
40. 40.
Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. SIGGRAPH 2002 pp. 362–371 (2002)Google Scholar
41. 41.
Lipman Y., Chen X., Daubechies I., Funkhouser T.: Symmetry factored embedding and distance. ACM Trans. Graph. 29(4), 1–12 (2010)
42. 42.
Lui, L., Wong, T., Gu, X., Thompson, P., Chan, T., Yau, S.: Compression of surface diffeomorphism using Beltrami coefficient. IEEE Comput. Vis. Patt. Recogn. (CVPR), pp. 2839–2846 (2010)Google Scholar
43. 43.
Lui, L., Wong, T., Gu, X., Thompson, P., Chan, T., Yau, S.: Hippocampal shape registration using Beltrami holomorphic flow. Medical Image Computing and Computer Assisted Intervention(MICCAI), Part II. LNCS 6362, pp. 323–330 (2010)Google Scholar
44. 44.
Lui L., Wong T., Zeng W., Gu X., Thompson P., Chan T., Yau S.: Detecting shape deformations using yamabe flow and Beltrami coefficents. J. Inverse Probl. Imaging (IPI) 4(2), 311–333 (2010)
45. 45.
Lui, L., Wong, T., Zeng, W., Gu, X., Thompson, P., Chan, T., Yau, S.: Optimization of surface registrations using beltrami holomorphic flow. J. Scientific Comput. (2011)Google Scholar
46. 46.
Luo F.: Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)
47. 47.
Mastin C., Thompson J.: Discrete quasiconformal mappings. Z. Angew. Math. Phys. 29, 1–11 (1978)
48. 48.
Mastin C., Thompson J.: Quasiconformal mappings and grid generation. SIAM J. Sci. Stat. Comput. 5(2), 305–310 (1984)
49. 49.
Morrey C.: On the solutions of quasi-linear elliptic differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)
50. 50.
Praun E., Hoppe H.: Spherical parametrization and remeshing. ACM Trans. Graph. 22(3), 340–349 (2003)
51. 51.
Ray N., Li W.C., Levy B., Sheffer A., Alliez P.: Periodic global parameterization. ACM Trans. Graph. 25(4), 1460–1485 (2005)
52. 52.
Sheffer A., Lévy B., Mogilnitsky M., Bogomyakov A.: ABF++: fast and robust angle based flattening. ACM Trans. Graph. 24(2), 311–330 (2005)
53. 53.
Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Foundations and Trends® in Computer Graphics and Vision (2012, in press)Google Scholar
54. 54.
Sheffer A., de Sturler E.: Parameterization of faced surfaces for meshing using angle based flattening. Eng. Comput. 17(3), 326–337 (2001)
55. 55.
Springborn B., Schröder P., Pinkall U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 1–11 (2008)
56. 56.
Vlasyuk, A.: Automatic construction of conformal and quasiconformal mapping of doubly connected and triple connected domains. Akad. Nauk Ukrainy Inst. Mat., preprint (Akademiya Nauk Ukrainy Institut Matematiki, preprint) 57, 1–57 (1991)Google Scholar
57. 57.
Wang S., Wang Y., Jin M., Gu X.D., Samaras D.: Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1209–1220 (2007)
58. 58.
Weisel J.: Numerische ermittlung quasikonformer abbildungen mit finiten elementen. Numer. Math. 35, 201–222 (1980)
59. 59.
Zayer, R., Levy, B., Seidel, H.P.: Linear angle based parameterization. In: In Symposium on Geometry Processing, pp. 135–141 (2007)Google Scholar
60. 60.
Zeng, W., Jin, M., Luo, F., Gu, X.: Computing canonical homotopy class representative using hyperbolic structure. In: IEEE International Conference on Shape Modeling and Applications (SMI 2009) (2009)Google Scholar
61. 61.
Zeng W., Marino J., Gurijala K., Gu X., Kaufman A.: Supine and prone colon registration using quasi-conformal mapping. IEEE Trans. Vis. Comput. Graph. (IEEE TVCG) 16(6), 1348–1357 (2010)
62. 62.
Zeng W., Samaras D., Gu X.: Ricci flow for 3D shape analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 662–677 (2010)
63. 63.
Zeng, W., Zeng, Y., Wang, Y., Yin, X., Gu, X., Samaras, D.: 3D non-rigid surface matching and registration based on holomorphic differentials. In: The 10th European Conference on Computer Vision (ECCV) 2008, pp. 1–14 (2008)Google Scholar

## Authors and Affiliations

• Wei Zeng
• 1
• Lok Ming Lui
• 2
• Feng Luo
• 3
• Tony Fan-Cheong Chan
• 4
• Shing-Tung Yau
• 5
• David Xianfeng Gu
• 1
1. 1.Department of Computer ScienceStony Brook UniversityStony BrookUSA
2. 2.Department of MathematicsThe Chinese University of Hong KongShatinHong Kong
3. 3.Department of MathematicsRutgers UniversityPiscatawayUSA
4. 4.The Hong Kong University of Science and TechnologyKowloonHong Kong
5. 5.Department of MathematicsHarvard UniversityCambridgeUSA