Numerische Mathematik

, Volume 121, Issue 4, pp 731–752 | Cite as

Convergence and optimality of the adaptive Morley element method

Article

Abstract

This paper is devoted to the convergence and optimality analysis of the adaptive Morley element method for the fourth order elliptic problem. A new technique is developed to establish a quasi-orthogonality which is crucial for the convergence analysis of the adaptive nonconforming method. By introducing a new parameter-dependent error estimator and further establishing a discrete reliability property, sharp convergence and optimality estimates are then fully proved for the fourth order elliptic problem.

Mathematics Subject Classification (2010)

65N30 65N15 35J30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth M., Rankin R.: Robust a posteriori error estimation for the nonconforming Fortin-Soulie finite-element approximation. Math. Comput. 77, 1917–1939 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Babuska I., Rheinboldt W.C.: Error estimates for adaptive finite element computations. SIAM. J. Numer. Anal. 15, 736–754 (1978)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    da Veiga L.B., Niiranen J., Stenberg R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165–179 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Binev P., Dahmen W., DeVore R., Petrushev P.: Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002)MathSciNetMATHGoogle Scholar
  5. 5.
    Binev P., DeVore R.: Fast computation in adaptive tree approximation. Numer. Math. 97, 193–217 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Binev P., Dahmen W., DeVore R.: Adaptive finite-element methods with convergence rate. Numer. Math. 97, 219–268 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Brenner S., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)MATHGoogle Scholar
  8. 8.
    Brenner S.C., Sung L.-Y.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Carstensen C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Carstensen C., Bartels S., Jansche S.: A posteriori error estimates for nonconforming finite-element methods. Numer. Math. 92, 233–256 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite-element methods. Numer. Math. 107, 473–502 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Carstensen C., Hu J., Orlando A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM. J. Numer. Anal. 45, 68–82 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Carstensen C., Hoppe R.H.W.: Convergence analysis of an adaptive nonconforming finite-element method. Numer. Math. 103, 251–266 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Cascon J. Manuel, Kreuzer C., Nochetto R.H., Siebert K.G.: Quasi-optimal convergence rate for an adaptive finite-element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chen L., Holst M., Xu J.: Convergence and optimality of adaptive mixed finite-element methods. Math. Comput. 78, 35–53 (2008)MathSciNetGoogle Scholar
  16. 16.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North–Holland, 1978; reprinted as SIAM Classics in Applied Mathematics (2002)Google Scholar
  17. 17.
    Dari E., Duran R., Padra C.: Error estimators for nonconforming finite-element approximations of the Stokes problem. Math. Comput. 64, 1017–1033 (1995)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Dari E., Duran R., Padra C., Vampa V.: A posteriori error estimators for nonconforming finite- element methods. Math. Model. Numer. Anal. 30, 385–400 (1996)MathSciNetMATHGoogle Scholar
  19. 19.
    Dörfler W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gudi T.: A new error analysis for discontinous finite element methods for linear problems. Math. Comput. 79, 2169–2189 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hu J., Shi Z.C.: A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hu, J., Shi, Z.C., Xu, J.C.: Convergence and optimality of adaptive nonconforming methods for high-order differential equations, Research Report 19. School of Mathematical Sciences and Institute of Mathematics, Peking University (2009)Google Scholar
  23. 23.
    Hu, J., Xu, J.C.: Convergence of Adaptive Conforming and Nonconforming Finite Element Methods for the Perturbed Stokes Equation, Research Report 73. School of Mathematical Sciences and Institute of Mathematics, Peking University. http://www.math.pku.edu.cn:8000/var/preprint/7297.pdf (2007)
  24. 24.
    Marini L.: An inexpensive method for the evaluation of the solution of the lowest order Raviart–Thomas mixed method. SIAM J. Numer. Anal. 22, 493–496 (1985)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Morley L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Q. 19, 149–169 (1968)Google Scholar
  26. 26.
    Morin P., Nochetto R., Siebert K.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Morin P., Nochetto R.H., Siebert K.G.: Convergence of adaptive finite-element methods. SIAM Rev. 44, 631–658 (2002)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Shi Z.C.: Error estimates for the Morley element. Chin. J. Numer. Math. Appl. 12, 102–108 (1990)Google Scholar
  29. 29.
    Stevenson R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Stevenson R.: The completion of locally refined simplicial partitions created by bisection. Math.Comput. 77, 227–241 (2007)MathSciNetGoogle Scholar
  31. 31.
    Verfürth R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Technique. Wiley-Teubner, New York (1996)Google Scholar
  32. 32.
    Wang, M., Zhang, S.: Local a priori and a posteriori error estimates of finite-elements for biharmonic equation. Research Report 13. School of Mathematical Sciences and Institute of Mathematics, Peking University (2006)Google Scholar
  33. 33.
    Wang, M., Xu, J.C.: Minimal finite-element spaces for 2m-th order partial differential equations in R n. Research Report 29. School of Mathematical Sciences and Institute of Mathematics, Peking University (submitted to Mathematics of Computation) (2006)Google Scholar
  34. 34.
    Xu J.C.: Iterative methods by space secomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.LMAM and School of Mathematical SciencesPeking UniversityBeijingPeople’s Republic of China
  2. 2.Institute of Computational MathematicsChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.The School of Mathematical SciencesPeking UniversityBeijingPeople’s Republic of China
  4. 4.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations