Numerische Mathematik

, Volume 121, Issue 3, pp 461–471 | Cite as

On the Lebesgue constant of barycentric rational interpolation at equidistant nodes

  • Len Bos
  • Stefano De Marchi
  • Kai Hormann
  • Georges Klein


Recent results reveal that the family of barycentric rational interpolants introduced by Floater and Hormann is very well-suited for the approximation of functions as well as their derivatives, integrals and primitives. Especially in the case of equidistant interpolation nodes, these infinitely smooth interpolants offer a much better choice than their polynomial analogue. A natural and important question concerns the condition of this rational approximation method. In this paper we extend a recent study of the Lebesgue function and constant associated with Berrut’s rational interpolant at equidistant nodes to the family of Floater–Hormann interpolants, which includes the former as a special case.

Mathematics Subject Classification (2000)

65D05 65F35 41A05 41A20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berrut J.P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15(1), 1–16 (1988)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Berrut J.P., Floater M.S., Klein G.: Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math. 61(9), 989–1000 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Berrut J.P., Mittelmann H.D.: Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval. Comput. Math. Appl. 33(6), 77–86 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bos L., De Marchi S., Hormann K.: On the Lebesgue constant of Berrut’s rational interpolant at equidistant nodes. J. Comput. Appl. Math. 236(4), 504–510 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Brutman L.: On the Lebesgue function for polynomial interpolation. SIAM J. Numer. Anal. 15(4), 694–704 (1978)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Brutman L.: Lebesgue functions for polynomial interpolation—a survey. Ann. Numer. Math. 4, 111–127 (1997)MathSciNetMATHGoogle Scholar
  7. 7.
    Eisinberg A., Fedele G., Franzè G.: Lebesgue constant for Lagrange interpolation on equidistant nodes. Anal. Theory Appl. 20(4), 323–331 (2004)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Epperson J.F.: On the Runge example. Am. Math. Mon. 94(4), 329–341 (1987)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Floater M.S., Hormann K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107(2), 315–331 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Henrici P.: Essentials of Numerical Analysis with Pocket Calculator Demonstrations. Wiley, New York (1982)MATHGoogle Scholar
  11. 11.
    Klein, G., Berrut, J.P.: Linear barycentric rational quadrature. BIT (2011). doi: 10.1007/s10543-011-0357-x
  12. 12.
    Klein, G., Berrut, J.P.: Linear rational finite differences from derivatives of barycentric rational interpolants. Tech. Rep. 2011-1, Department of Mathematics, University of Fribourg (2011)Google Scholar
  13. 13.
    Platte R.B., Trefethen L.N., Kuijlaars A.B.J.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53(2), 308–318 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Powell M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)MATHGoogle Scholar
  15. 15.
    Rivlin, T.J.: The Lebesgue constants for polynomial interpolation. In: Garnir, H.G., Unni, K.R., Williamson, J.H. (eds.) Functional Analysis and its Applications, Lecture Notes in Mathematics, vol. 399, pp. 442–437. Springer, Berlin (1974)Google Scholar
  16. 16.
    Runge C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Zeit. Math. Phys. 46, 224–243 (1901)MATHGoogle Scholar
  17. 17.
    Schönhage A.: Fehlerfortpflanzung bei Interpolation. Numer. Math. 3(1), 62–71 (1961)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Smith S.J.: Lebesgue constants in polynomial interpolation. Ann. Math. Inf. 33, 109–123 (2006)MATHGoogle Scholar
  19. 19.
    Trefethen L.N., Weideman J.A.C.: Two results on polynomial interpolation in equally spaced points. J. Approx. Theory 65(3), 247–260 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Len Bos
    • 1
  • Stefano De Marchi
    • 2
  • Kai Hormann
    • 3
  • Georges Klein
    • 4
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.Department of Pure and Applied MathematicsUniversity of PaduaPaduaItaly
  3. 3.Faculty of InformaticsUniversity of LuganoLuganoSwitzerland
  4. 4.Department of MathematicsUniversity of FribourgFribourgSwitzerland

Personalised recommendations