Advertisement

Numerische Mathematik

, Volume 121, Issue 1, pp 99–125 | Cite as

Multiscale RBF collocation for solving PDEs on spheres

  • Q. T. Le GiaEmail author
  • I. H. Sloan
  • H. Wendland
Article

Abstract

In this paper, we discuss multiscale radial basis function collocation methods for solving certain elliptic partial differential equations on the unit sphere. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. Two variants of the collocation method are considered (sometimes called symmetric and unsymmetric, although here both are symmetric). A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions.

Mathematics Subject Classification (2000)

65N35 65N55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fasshauer G.E.: Solving differential equations with radial basis functions: multilevel methods and smoothing. Adv. Comput. Math. 11, 139–159 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Fasshauer G.E., Jerome J.W.: Multistep approximation algorithms: improved convergence rates through postconditioning with smooth kernels. Adv. Comput. Math. 10, 1–27 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Flyer N., Wright G.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Flyer N., Wright G.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Franke C., Schaback R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Franke C., Schaback R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73–82 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Franke, R.: A critical comparison of some methods for interpolation of scattered data. Technical Report NPS-53-79-003, Naval Postgraduate School (1979)Google Scholar
  8. 8.
    Giesl P., Wendland H.: Meshless collocation: error estimates with application to dynamical systems. SIAM J. Numer. Anal. 45, 1723–1741 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hon Y.C., Mao X.Z.: An efficient numerical scheme for Burgers’ equation. Appl. Math. Comput. 95, 37–50 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hon Y.C., Schaback R.: On unsymmetric collocation by radial basis functions. Appl. Math. Comput. 119, 177–186 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kansa E.J.: Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics i. Comput. Math. 19, 127–145 (1990)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kansa E.J.: Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics ii: solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. 19, 147–161 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Le Gia Q.T.: Galerkin approximation for elliptic PDEs on spheres. J. Approx. Theory 130, 123–147 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Le Gia Q.T., Narcowich F.J., Ward J.D., Wendland H.: Continuous and discrete least-square approximation by radial basis functions on spheres. J. Approx. Theory 143, 124–133 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Le Gia Q.T., Sloan I.H., Wendland H.: Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal. 48, 2065–2090 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Morton T.M., Neamtu M.: Error bounds for solving pseudodifferential equations on spheres. J. Approx. Theory 114, 242–268 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Müller, C.: Spherical Harmonics, Lecture Notes in Mathematics, vol. 17. Springer-Verlag, Berlin (1966)Google Scholar
  18. 18.
    Narcowich F.J., Ward J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Power H., Barraco V.: A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations. Comput. Math. Appl. 43, 551–583 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Saff E.B., Kuijlaars A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Saff E.B., Rakhmanov E.A., Zhou Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Schoenberg I.J.: Positive definite function on spheres. Duke Math. J. 9, 96–108 (1942)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Wendland H.: Meshless Galerkin methods using radial basis functions. Math. Comput. 68, 1521–1531 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wendland H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  25. 25.
    Wendland, H.: Multiscale analysis in Sobolev spaces on bounded domains. Numer. Math. (to appear) (2010)Google Scholar
  26. 26.
    Xu Y., Cheney E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116, 977–981 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations