Numerische Mathematik

, 119:465 | Cite as

Tensorisation of vectors and their efficient convolution

  • Wolfgang HackbuschEmail author


In recent papers the tensorisation of vectors has been discussed. In principle, this is the isomorphic representation of an \({\mathbb{R}^{n}}\) vector as a tensor. Black-box tensor approximation methods can be used to reduce the data size of the tensor representation. In particular, if the vector corresponds to a grid function, the resulting data size can become much smaller than n, e.g., \({O(\log n)\ll n}\) . In this article we discuss the convolution of two vectors which are given via a sparse tensor representation. We want to obtain the result again in the tensor representation. Furthermore, the cost of the convolution algorithm should be related to the operands’ data sizes. While \({\mathbb{R}^{n}}\) vectors can be considered as grid values of function, we also apply the corresponding procedure to univariate functions.

Mathematics Subject Classification (2000)

15A69 15A99 44A35 65F99 65T99 


  1. 1.
    Braess D., Hackbusch W.: On the efficient computation of high-dimensional integrals and the approximation by exponential sums. In: DeVore, R., Kunoth, A. (eds) Multiscale, nonlinear and adaptive approximation, pp. 39–74. Springer, Berlin (2009)CrossRefGoogle Scholar
  2. 2.
    Espig, M.: Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensionen. Doctoral thesis, University Leipzig (2008)Google Scholar
  3. 3.
    Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector-tensorization. Submitted (2010)Google Scholar
  4. 4.
    Hackbusch W.: Convolution of hp-functions on locally refined grids. IMA J. Numer. Anal. 29, 960–985 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Hackbusch, W.: Tensor spaces and numerical tensor calculus. Monograph (in preparation)Google Scholar
  6. 6.
    Hackbusch W., Kühn S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15, 706–722 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Khoromskij, B.N.: O(d log N)-quantics approximation of N-d tensors in high-dimensional numerical modeling. Constr. Approx (2011). doi: 10.1007/s00365-011-9131-1
  8. 8.
    Oseledets I.V.: Approximation of 2d × 2d matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. 31, 2130–2145 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Oseledets I.V., Tyrtyshnikov E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31, 3744–3759 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Max-Planck-Institut, Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations