Advertisement

Numerische Mathematik

, 119:489 | Cite as

Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems

  • Wolf-Jürgen Beyn
  • Cedric Effenberger
  • Daniel Kressner
Article

Abstract

Invariant pairs have been proposed as a numerically robust means to represent and compute several eigenvalues along with the corresponding (generalized) eigenvectors for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In this work, we consider nonlinear eigenvalue problems that depend on an additional parameter and our interest is to track several eigenvalues as this parameter varies. Based on the concept of invariant pairs, a theoretically sound and reliable numerical continuation procedure is developed. Particular attention is paid to the situation when the procedure approaches a singularity, that is, when eigenvalues included in the invariant pair collide with other eigenvalues. For the real generic case, it is proven that such a singularity only occurs when two eigenvalues collide on the real axis. It is shown how this situation can be handled numerically by an appropriate expansion of the invariant pair. The viability of our continuation procedure is illustrated by a numerical example.

Mathematics Subject Classification (2000)

65F15 65H17 47A15 65P30 

References

  1. 1.
    Allgower, E.L., Georg, K.: Numerical continuation methods. In: Springer Series in Computational Mathematics, vol. 13. An Introduction. Springer, Berlin (1990)Google Scholar
  2. 2.
    Arnol’d V.I.: Matrices depending on parameters. Uspehi Mat. Nauk 26(2(158)), 101–114 (1971)MathSciNetGoogle Scholar
  3. 3.
    Arnol’d V.I.: Lectures on bifurcations and versal families. Uspehi Mat. Nauk 27(5(167)), 119–184 (1972) A series of articles on the theory of singularities of smooth mappingsMathSciNetzbMATHGoogle Scholar
  4. 4.
    Betcke T., Kressner D.: Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435(3), 514–536 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Betcke T., Trefethen L.N.: Reviving the method of particular solutions. SIAM Rev. 47(3), 469–491 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Beyn, W.-J.: An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. arXiv:1003.1580 (2010)Google Scholar
  7. 7.
    Beyn, W.-J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Y.A., Sandstede, B.: Numerical continuation, and computation of normal forms. In: Handbook of Dynamical Systems, vol. 2, pp. 149–219. North-Holland, Amsterdam (2002)Google Scholar
  8. 8.
    Beyn, W.-J., Kleß, W., Thümmler, V.: Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension. In: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 47–72. Springer, Berlin (2001)Google Scholar
  9. 9.
    Beyn W.-J., Thümmler V.: Continuation of invariant subspaces for parameterized quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl. 31(3), 1361–1381 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bindel D. S., Demmel J.W., Friedman M.: Continuation of invariant subspaces in large bifurcation problems. SIAM J. Sci. Comput. 30(2), 637–656 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Botchev M.A., Sleijpen G.L.G., Sopaheluwakan A.: An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems. Linear Algebra Appl. 431(3–4), 427–440 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Deuflhard, P.: Newton methods for nonlinear problems—affine invariance and adaptive algorithms. In: Springer Series in Computational Mathematics, vol. 35. Springer, Berlin (2006). Corr. 2nd printing editionGoogle Scholar
  13. 13.
    Dieci L., Friedman M.J.: Continuation of invariant subspaces. Numer. Linear Algebra Appl. 8(5), 317–327 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gohberg I., Kaashoek M.A., van Schagen F.: On the local theory of regular analytic matrix functions. Linear Algebra Appl. 182, 9–25 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gohberg I., Lancaster P., Rodman L.: Matrix Polynomials. Academic Press, New York (1982)zbMATHGoogle Scholar
  16. 16.
    Gohberg I., Rodman L.: Analytic matrix functions with prescribed local data. J. Anal. Math. 40, 90–128 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Govaerts W.: Numerical Methods for Bifurcations of Dynamical Equilibria. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Higham N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2008)zbMATHCrossRefGoogle Scholar
  19. 19.
    Jarlebring, E.: The spectrum of delay-differential equations: numerical methods, stability and perturbation . PhD thesis, Inst. Comp. Math, TU Braunschweig (2008)Google Scholar
  20. 20.
    Kailath, T.: Linear Systems. In: Prentice-Hall Information and System Sciences Series. Prentice-Hall Inc., Englewood Cliffs (1980)Google Scholar
  21. 21.
    Kamiya N., Wu S.T.: Generalized eigenvalue formulation of the Helmholtz equation by the Trefftz method. Eng. Comput. 11, 177–186 (1994)CrossRefGoogle Scholar
  22. 22.
    Keldyš M.V.: On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations. Doklady Akad. Nauk SSSR (N.S.) 77, 11–14 (1951)MathSciNetGoogle Scholar
  23. 23.
    Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Applications of Bifurcation Theory (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976), pp. 359–384. Publ. Math. Res. Center, No. 38. Academic Press, New York (1977)Google Scholar
  24. 24.
    Košir T.: Kronecker bases for linear matrix equations, with application to two-parameter eigenvalue problems. Linear Algebra Appl. 249, 259–288 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kressner D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 355–372 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lui S.H., Keller H.B., Kwok T.W.C.: Homotopy method for the large, sparse, real nonsymmetric eigenvalue problem. SIAM J. Matrix Anal. Appl. 18(2), 312–333 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Mathias R.: A chain rule for matrix functions and applications. SIAM J. Matrix Anal. Appl. 17(3), 610–620 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitteilungen 27 (2004)Google Scholar
  29. 29.
    Mennicken, R., Möller, M.: Non-Self-Adjoint Boundary Eigenvalue Problems. In: North-Holland Mathematics Studies, vol. 192. North-Holland, Amsterdam (2003)Google Scholar
  30. 30.
    Michiels, W., Niculescu, S.I.: Stability and Stabilization of Time-Delay Systems. In: Advances in Design and Control, vol. 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)Google Scholar
  31. 31.
    Moreno E., Erni D., Hafner C.: Band structure computations of metallic photonic crystals with the multiple multipole method. Phys. Rev. B 65(15), 155120 (2002)CrossRefGoogle Scholar
  32. 32.
    Steinbach O., Unger G.: A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator. Numer. Math. 113(2), 281–298 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Wilkening J.: An algorithm for computing Jordan chains and inverting analytic matrix functions. Linear Algebra Appl. 427(1), 6–25 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Wu, J.: Theory and Applications of Partial Functional Differential Equations. In: Applied Mathematical Sciences, vol. 119. Springer, New York (1996)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Wolf-Jürgen Beyn
    • 1
  • Cedric Effenberger
    • 2
  • Daniel Kressner
    • 3
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Seminar for Applied MathematicsD-MATH, ETH ZurichZurichSwitzerland
  3. 3.MATHICSE, EPF LausanneLausanneSwitzerland

Personalised recommendations