Numerische Mathematik

, Volume 119, Issue 1, pp 123–161 | Cite as

Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients

  • Andrea Barth
  • Christoph Schwab
  • Nathaniel Zollinger
Article

Abstract

In Monte Carlo methods quadrupling the sample size halves the error. In simulations of stochastic partial differential equations (SPDEs), the total work is the sample size times the solution cost of an instance of the partial differential equation. A Multi-level Monte Carlo method is introduced which allows, in certain cases, to reduce the overall work to that of the discretization of one instance of the deterministic PDE. The model problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors and work estimates are given both for the mean of the solutions and for higher moments. The overall complexity of computing mean fields as well as k-point correlations of the random solution is proved to be of log-linear complexity in the number of unknowns of a single Multi-level solve of the deterministic elliptic problem. Numerical examples complete the theoretical analysis.

Mathematics Subject Classification (2000)

65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuška I., Nobile F., Tempone R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007, electronic)Google Scholar
  2. 2.
    Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin Finite Element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal., 42, 800–825 (2004, electronic)Google Scholar
  3. 3.
    Barth A.: A Finite Element Method for martingale-driven stochastic partial differential equations. Commun. Stoch. Anal. 4, 355–375 (2010)MathSciNetGoogle Scholar
  4. 4.
    Barth, A., Lang, A.: Almost sure convergence of a Galerkin–Milstein approximation for stochastic partial differential equations. Tech. Report 2011–15. Seminar for Applied Mathematics, ETH Zurich, March 2009 (in review)Google Scholar
  5. 5.
    Barth, A., Lang, A.: Simulation of stochastic partial differential equations using Finite Element methods. Stochastics (2010, in press)Google Scholar
  6. 6.
    Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31, 4281–4304 (2009/2010)Google Scholar
  7. 7.
    Bieri M., Schwab C.: Sparse high order FEM for elliptic sPDEs. Comput. Methods Appl. Mech. Eng. 198, 1149–1170 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Braess D.: Finite Elemente, 3rd edn. Springer, Berlin (2002)Google Scholar
  9. 9.
    Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002)MATHGoogle Scholar
  10. 10.
    Cohen, A.: Numerical analysis of wavelet methods. In: Studies in Mathematics and its Applications. North-Holland, Amsterdam (2003)Google Scholar
  11. 11.
    Cohen A., DeVore R., Schwab C.: Convergence rates of best n-term approximations for a class of elliptic spdes. Found. Comput. Math. 10, 615–646 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cohen A., DeVore R., Schwab C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. J. Anal. Appl. 9, 11–47 (2011)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Da Prato G., Zabczyk J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)Google Scholar
  14. 14.
    Dietrich C.R., Newsam G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18, 1088–1107 (1997)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Geissert M., Kovács M., Larsson S.: Rate of weak convergence of the Finite Element Method for the stochastic heat equation with additive noise. BIT Numer. Math. 49, 343–356 (2009)MATHCrossRefGoogle Scholar
  16. 16.
    Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001, reprint of the 1998 edition)Google Scholar
  17. 17.
    Giles M.: Improved multilevel Monte Carlo convergence using the Milstein scheme. Preprint NA-06/22. Oxford University Computing Laboratory, Parks Road (2006)Google Scholar
  18. 18.
    Giles M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607–617 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Griebel M., Oswald P.: On additive Schwarz preconditioners for sparse grid discretizations. Numer. Math. 66, 449–463 (1994)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Grisvard P.: Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)Google Scholar
  21. 21.
    Heinrich, S.: Multilevel Monte Carlo Methods. In: Large-Scale Scientific Computing, Third International Conference, LSSC 2001, Sozopol, Bulgaria, June 6–10, 2001 (Revised Papers, S. Margenov, J. Wasniewski, and P. Y. Yalamov, eds., vol. 2179 of Lecture Notes in Computer Science, Springer, 2001, pp. 58–67)Google Scholar
  22. 22.
    Kovács M., Larsson S., Saedpanah F.: Finite Element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48, 408–427 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lang A., Potthoff J.: Fast simulation of Gaussian random fields (2009, in review)Google Scholar
  24. 24.
    Lions, J.-L., Magenes E.: Non-homogeneous boundary value problems and applications, vol. I. Springer-Verlag, New York (1972). (Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181)Google Scholar
  25. 25.
    Mishra S., Schwab C.: Sparse tensor Multi-Level Monte Carlo Finite Volume Methods for hyperbolic conservation laws with random intitial data. Tech. Report 2010-24. Seminar for Applied Mathematics, ETH Zurich, September 2010 (in review)Google Scholar
  26. 26.
    Mishra S., Schwab C., Šukys J.: Multi-Level Monte Carlo Finite Volume Mmethods for nonlinear systems of conservation laws in multi-dimensions with random intitial data. Tech. Report 2011-02. Seminar for Applied Mathematics, ETH Zurich, January 2011 (in review)Google Scholar
  27. 27.
    Naff R.L., Haley D.F., Sudicky E.: High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media 1. Methodology and flow results. Water Resour. Res. 34, 663–677 (1998)CrossRefGoogle Scholar
  28. 28.
    Naff R.L., Haley D.F., Sudicky E.: High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media 2. Transport results. Water Resour. Res. 34, 679–697 (1998)CrossRefGoogle Scholar
  29. 29.
    Nobile F., Tempone R., Webster C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Nobile F., Tempone R., Webster C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Schwab C., Todor R.A.: Sparse Finite Elements for elliptic problems with stochastic loading. Numer. Math. 95, 707–734 (2003)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Schwab C., Todor R.A.: Sparse Finite Elements for stochastic elliptic problems—higher order moments. Computing 71, 43–63 (2003)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Schwab C., Todor R.A.: Karhunen–Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217, 100–122 (2006)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    von Petersdorff T., Schwab C.: Numerical solution of parabolic equations in high dimensions. M2AN Math. Model. Numer. Anal. 38, 93–127 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andrea Barth
    • 1
  • Christoph Schwab
    • 1
  • Nathaniel Zollinger
    • 1
  1. 1.ETH Zentrum, Seminar für Angewandte MathematikZurichSwitzerland

Personalised recommendations