Numerische Mathematik

, Volume 118, Issue 4, pp 601–661 | Cite as

Uniform controllability properties for space/time-discretized parabolic equations

  • Franck BoyerEmail author
  • Florence Hubert
  • Jérôme Le Rousseau


This article is concerned with the analysis of semi-discrete-in-space and fully-discrete approximations of the null controllability (and controllability to the trajectories) for parabolic equations. We propose an abstract setting for space discretizations that potentially encompasses various numerical methods and we study how the controllability problems depend on the discretization parameters. For time discretization we use θ-schemes with \({\theta \in [\frac{1}2,1]}\) . For the proofs of controllability we rely on the strategy introduced by Lebeau and Robbiano (Comm Partial Differ Equ 20:335–356, 1995) for the null-controllability of the heat equation, which is based on a spectral inequality. We obtain relaxed uniform observability estimates in both the semi-discrete and fully-discrete frameworks, and associated uniform controllability properties. For the practical computation of the control functions we follow J.-L. Lions’ Hilbert Uniqueness Method strategy, exploiting the relaxed uniform observability estimate. Algorithms for the computation of the controls are proposed and analysed in the semi-discrete and fully-discrete cases. Additionally, we prove an error bound between the fully discrete and the semi-discrete control functions. This bound is however not uniform with respect to the space discretization. The theoretical results are illustrated through numerical experimentations.

Mathematics Subject Classification (2000)

35K05 65M06 93B05 93B07 93B40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyer F., Hubert F., Le Rousseau J.: Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations. J. Math. Pures Appl. 93(3), 240–273 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Boyer F., Hubert F., Le Rousseau J.: Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications. SIAM J. Control Optim. 48(8), 5357–5397 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Carthel C., Glowinski R., Lions J.L.: On exact and approximate boundary controllabilities for the heat equation: a numerical approach. J. Optim. Theory Appl. 82(3), 429–484 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ervedoza S., Valein J.: On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23(1), 163–190 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fernández-Cara, E., Münch, A.: Numerical exact controllability of the 1D heat equation: primal algorithms. PreprintGoogle Scholar
  6. 6.
    Fursikov, A., Imanuvilov, O.Y.: Controllability of Evolution Equations, vol. 34. Lecture notes. Seoul National University, Korea (1996)Google Scholar
  7. 7.
    Glowinski R., Lions J.L.: Exact and approximate controllability for distributed parameter systems. Acta Numer. 3, 269–378 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Glowinski, R., Lions, J.L., He, J.: Exact and approximate controllability for distributed parameter systems. In: Encyclopedia of Mathematics and its Applications, vol. 117. A Numerical Approach. Cambridge University Press, Cambridge (2008)Google Scholar
  9. 9.
    Jerison, D., Lebeau, G.: Nodal sets of sums of eigenfunctions. In: Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), pp. 223–239. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1999)Google Scholar
  10. 10.
    Labbé S., Trélat E.: Uniform controllability of semidiscrete approximations of parabolic control systems. Syst. Control Lett. 55, 597–609 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Le Rousseau, J., Lebeau, G.: On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. Preprint (2009)Google Scholar
  12. 12.
    Lebeau G., Robbiano L.: Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20, 335–356 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lebeau G., Zuazua E.: Null-controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141, 297–329 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lopez, A., Zuazua, E.: Some new results to the null controllability of the 1-d heat equation. Sminaire sur les quations aux Drives Partielles, 1997–1998, Exp. No. VIII, 22 pp., Ecole Polytech., Palaiseau (1998)Google Scholar
  15. 15.
    Münch A., Zuazua E.: Numerical approximation of null controls for the heat equation: ill-posedness and remedies. Inverse Problems 26, 085018 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zheng C.: Controllability of the time discrete heat equation. Asymptotic Anal. 59, 139–177 (2008)zbMATHGoogle Scholar
  17. 17.
    Zuazua, E.: Control and Numerical Approximation of the Wave and Heat Equations, vol. III, pp. 1389–1417. International Congress of Mathematicians, Madrid, Spain (2006)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Franck Boyer
    • 1
    Email author
  • Florence Hubert
    • 1
  • Jérôme Le Rousseau
    • 2
  1. 1.Aix-Marseille UniversitéLaboratoire d’Analyse Topologie Probabilités (LATP)Marseille cedex 13France
  2. 2.Laboratoire Mathématiques et Applications, Physique Mathématique d’OrléansUniversité d’OrléansOrléans cedex 2France

Personalised recommendations