Numerische Mathematik

, Volume 118, Issue 3, pp 401–427 | Cite as

An oscillation-free adaptive FEM for symmetric eigenvalue problems

Article

Abstract

A refined a posteriori error analysis for symmetric eigenvalue problems and the convergence of the first-order adaptive finite element method (AFEM) is presented. The H1 stability of the L2 projection provides reliability and efficiency of the edge-contribution of standard residual-based error estimators for P1 finite element methods. In fact, the volume contributions and even oscillations can be omitted for Courant finite element methods. This allows for a refined averaging scheme and so improves (Mao et al. in Adv Comput Math 25(1–3):135–160, 2006). The proposed AFEM monitors the edge-contributions in a bulk criterion and so enables a contraction property up to higher-order terms and global convergence. Numerical experiments exploit the remaining L2 error contributions and confirm our theoretical findings. The averaging schemes show a high accuracy and the AFEM leads to optimal empirical convergence rates.

Mathematics Subject Classification (2000)

65N12 65N25 65N30 65N50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. In: Pure and Applied Mathematics. Wiley-Interscience, New York (2000)Google Scholar
  2. 2.
    Alberty J., Carstensen C., Funken S.A.: Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms 20(2–3), 117–137 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alberty J., Carstensen C., Funken S.A., Klose R.: Matlab implementation of the finite element method in elasticity. Computing 69(3), 239–263 (2002)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol II, pp. 641–787. North-Holland, Amsterdam (1991)Google Scholar
  5. 5.
    Babuška I., Osborn J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52(186), 275–297 (1989)MATHGoogle Scholar
  6. 6.
    Bangerth W., Rannacher R.: Adaptive finite element methods for differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2003)Google Scholar
  7. 7.
    Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)Google Scholar
  8. 8.
    Carstensen C.: An adaptive mesh-refining algorithm allowing for an H 1 stable L 2 projection onto Courant finite element spaces. Constr. Approx. 20(4), 549–564 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Carstensen C.: All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math. Comput. 73(247), 1153–1165 (2004)MathSciNetMATHGoogle Scholar
  10. 10.
    Carstensen C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100(4), 617–637 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cascon J.M., Kreuzer C., Nochetto R.H., Siebert K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chatelin F.: Spectral approximation of linear operators. Computer Science and Applied Mathematics. Academic Press, New York (1983)Google Scholar
  13. 13.
    Durán R.G., Padra C., Rodríguez R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Giani S., Graham I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Heuveline V., Rannacher R.: A posteriori error control for finite approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15(1–4), 107–138 (2001)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Knyazev A.V.: New estimates for Ritz vectors. Math. Comput. 66(219), 985–995 (1997)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Knyazev A.V., Osborn J.E.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43(6), 2647–2667 (2006)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Larson M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608–625 (2000)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Larsson, S., Thomée, V.: Partial differential equations with numerical methods. In: Texts in Applied Mathematics, vol. 45. Springer, Berlin (2003)Google Scholar
  20. 20.
    Mao D., Shen L., Zhou A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math. 25(1–3), 135–160 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Raviart P.A., Thomas J.M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maî trise. Masson, Paris (1983)Google Scholar
  22. 22.
    Sauter S.: hp-finite elements for elliptic eigenvalue problems: error estimates which are explicit with respect to λ, h, and p. SIAM J. Numer. Anal. 48(1), 95–108 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Strang G., Fix G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  24. 24.
    Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, New York (1996)MATHGoogle Scholar
  25. 25.
    Walsh T.F., Reese G.M., Hetmaniuk U.L.: Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Eng. 196(37–40), 3614–3623 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Computational Science and EngineeringYonsei UniversitySeoulKorea

Personalised recommendations