Numerische Mathematik

, Volume 117, Issue 4, pp 601–629 | Cite as

Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition

  • Yanzhao Cao
  • Max Gunzburger
  • Xiaoming He
  • Xiaoming Wang
Article

Abstract

Domain decomposition methods for solving the coupled Stokes–Darcy system with the Beavers–Joseph interface condition are proposed and analyzed. Robin boundary conditions are used to decouple the Stokes and Darcy parts of the system. Then, parallel and serial domain decomposition methods are constructed based on the two decoupled sub-problems. Convergence of the two methods is demonstrated and the results of computational experiments are presented to illustrate the convergence.

Mathematics Subject Classification (2010)

65M55 65M12 65M15 65M60 35M10 35Q35 76D07 76S05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agoshkov, V.I.: Poincaré-Steklov operators and domain decomposition methods in finite dimensional spaces. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), pp. 73–112. SIAM, Philadelphia (1988)Google Scholar
  2. 2.
    Agoshkov V.I., Lebedev V.I.: Poincaré-Steklov operators and methods of partition of the domain in variational problems. Computat. Process. syst. 2, 173–227 (1985) (in Russian)MathSciNetMATHGoogle Scholar
  3. 3.
    Amara M., Capatina D., Lizaik L.: Coupling of Darcy-Forchheimer and compressible Navier-Stokes equations with heat transfer. SIAM J. Sci. Comput. 31(2), 1470–1499 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arbogast T., Brunson D.S.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Arbogast T., Gomez M.: A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13(3), 331–348 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Babuška I., Gatica G.N.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48(2), 498–523 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Badea L., Discacciati M., Quarteroni A.: Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Badia S., Codina R.: Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal 47(3), 1971–2000 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Beavers G., Joseph D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)CrossRefGoogle Scholar
  10. 10.
    Bernardi C., Hecht F., Nouri F.Z.: A new finite-element discretization of the Stokes problem coupled with the Darcy equations. IMA J. Numer. Anal. 30(1), 61–93 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bernardi C., Hecht F., Pironneau O.: Coupling Darcy and Stokes equations for porous media with cracks. Math. Model. Numer. Anal. 39(1), 7–35 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bernardi C., Rebollo T.C., Hecht F., Mghazli Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42(3), 375–410 (2008)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Boubendir Y., Tlupova S.: Stokes–Darcy boundary integral solutions using preconditioners. J. Comput. Phys. 228(23), 8627–8641 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bramble J.H., Pasciak J.E., Schatz A.H.: The construction of preconditioners for elliptic problems by substructuring I. Math. Comput. 47(175), 103–134 (1986)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Burman E., Hansbo P.: Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Methods Partial Differ. Equ. 21(5), 986–997 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Burman E., Hansbo P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198(1), 35–51 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Cai M., Mu M., Xu J.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47(5), 3325–3338 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Cai M., Mu M., Xu J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233(2), 346–355 (2009)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Cao Y., Gunzburger M., Hu X., Hua F., Wang X., Zhao W.: Finite element approximation for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM. J. Numer. Anal. 47(6), 4239–4256 (2010)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Cao Y., Gunzburger M., Hua F., Wang X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Comm. Math. Sci. 8(1), 1–25 (2010)MathSciNetMATHGoogle Scholar
  21. 21.
    Çeşmelioğlu A., Rivière B.: Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16(4), 249–280 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Çeşmelioğlu A., Rivière B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40(1–3), 115–140 (2009)MathSciNetMATHGoogle Scholar
  23. 23.
    Chen N., Gunzburger M., Wang X.: Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes-Brinkman system. J. Math. Anal. Appl. 368(2), 658–676 (2010)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Chen W., Chen P., Gunzburger M., Yan N.: Superconvergence analysis of FEMs for the Stokes–Darcy system. Math. Methods Appl. Sci. 33(13), 1605–1617 (2010)MathSciNetMATHGoogle Scholar
  25. 25.
    Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM. J. Numer. Anal. (to appear)Google Scholar
  26. 26.
    Chidyagwai P., Rivière R.B.: On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009)CrossRefGoogle Scholar
  27. 27.
    Dawson C.: Analysis of discontinuous finite element methods for ground water/surface water coupling. SIAM J. Numer. Anal. 44(4), 1375–1404 (2006)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Swizerland (2004)Google Scholar
  29. 29.
    Discacciati, M.: Iterative methods for Stokes/Darcy coupling. In: Domain Decomposition Methods in Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 40, pp. 563–570. Springer, Berlin (2005)Google Scholar
  30. 30.
    Discacciati M., Miglio E., Quarteroni A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Numerical Mathematics and Advanced Applications, pp. 3–20. Springer Italia, Milan (2003)Google Scholar
  32. 32.
    Discacciati M., Quarteroni A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6(2–3), 93–103 (2004)MathSciNetMATHGoogle Scholar
  33. 33.
    Discacciati M., Quarteroni A., Valli A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Ervin V.J., Jenkins E.W., Sun S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47(2), 929–952 (2009)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Feng M., Qi R., Zhu R., Ju B.: Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem. Appl. Math. Mech. 31(3), 393–404 (2010) (English Ed.)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Galvis, J., Sarkis, M.: Balancing domain decomposition methods for mortar coupling Stokes–Darcy systems. In: Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng., vol. 55, pp. 373–380. Springer, Berlin (2007)Google Scholar
  37. 37.
    Galvis J., Sarkis M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)MathSciNetMATHGoogle Scholar
  38. 38.
    Galvis J., Sarkis M.: FETI and BDD preconditioners for Stokes-Mortar-Darcy systems. Commun. Appl. Math. Comput. Sci. 5, 1–30 (2010)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Gander M.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Gatica G.N., Meddahi S., Oyarzúa R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Girault V., Rivière B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal 47(3), 2052–2089 (2009)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Guest J.K., Prévost J.H.: Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int. J. Numer. Methods Eng. 66(3), 461–484 (2006)MATHCrossRefGoogle Scholar
  43. 43.
    Hoppe R., Porta P., Vassilevski Y.: Computational issues related to iterative coupling of subsurface and channel flows. CALCOLO 44(1), 1–20 (2007)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Hua, F.: Modeling, analysis and simulation of Stokes–Darcy system with Beavers–Joseph interface condition. Ph.D. dissertation, The Florida State University (2009)Google Scholar
  45. 45.
    Jäger W., Mikeliä A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Jiang B.: A parallel domain decomposition method for coupling of surface and groundwater flows. Comput. Methods Appl. Mech. Eng. 198(9–12), 947–957 (2009)CrossRefGoogle Scholar
  47. 47.
    Jones I.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231–238 (1973)MATHCrossRefGoogle Scholar
  48. 48.
    Kanschat G., Riviére B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Karper T., Mardal K.A., Winther R.: Unified finite element discretizations of coupled Darcy-Stokes flow. Numer. Methods Partial Differ. Equ. 25(2), 311–326 (2009)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Layton W.J., Schieweck F., Yotov I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Lions, P.-L.: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), pp. 202–223. SIAM, Philadelphia (1990)Google Scholar
  52. 52.
    Mardal K.A., Tai X.C., Winther R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Masud A.: A stabilized mixed finite element method for Darcy-Stokes flow. Int. J. Numer. Methods Fluids 54(6-8), 665–681 (2007)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Mu M., Xu J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Nassehi V., Petera J.: A new least-squares finite element model for combined Navier-Stokes and darcy flows in geometrically complicated domains with solid and porous boundaries. Int. J. Numer. Methods Eng. 37(9), 1609–1620 (1994)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Popov P., Efendiev Y., Qin G.: Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun. Comput. Phys. 6(1), 162–184 (2009)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. In: Numerical Mathematics and Scientific Computation. Oxford Science Publications, New York (1999)Google Scholar
  58. 58.
    Rivière B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22(23), 479–500 (2005)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Rivière B., Yotov I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Rui H., Zhang R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198(33–36), 2692–2699 (2009)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Saffman P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 77–84 (1971)Google Scholar
  62. 62.
    Salinger A.G., Aris R., Derby J.J.: Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Methods Fluids 18(12), 1185–1209 (1994)MATHCrossRefGoogle Scholar
  63. 63.
    Tai X.C., Winther R.: A discrete de Rham complex with enhanced smoothness. CALCOLO 43(4), 287–306 (2006)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Tlupova S., Cortez R.: Boundary integral solutions of coupled Stokes and Darcy flows. J. Comput. Phys. 228(1), 158–179 (2009)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Urquiza J.M., N’Dri D., Garon A., Delfour M.C.: Coupling Stokes and Darcy equations. Appl. Numer. Math. 58(5), 525–538 (2008)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Xie X., Xu J., Xue G.: Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models. J. Comput. Math. 26(3), 437–455 (2008)MathSciNetMATHGoogle Scholar
  67. 67.
    Xu J., Zou J.: Some nonoverlapping domain decomposition methods. SIAM Rev. 40(4), 857–914 (1998)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Xu X., Zhang S.: A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations. SIAM J. Sci. Comput. 32(2), 855–874 (2010)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Zhang S., Xie X., Chen Y.: Low order nonconforming rectangular finite element methods for Darcy-Stokes problems. J. Comput. Math. 27(2–3), 400–424 (2009)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yanzhao Cao
    • 1
  • Max Gunzburger
    • 2
  • Xiaoming He
    • 2
    • 3
  • Xiaoming Wang
    • 4
  1. 1.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA
  2. 2.Department of Scientific ComputingFlorida State UniversityTallahasseeUSA
  3. 3.Department of Mathematics and StatisticsMissouri University of Science and TechnologyRollaUSA
  4. 4.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations