Numerische Mathematik

, Volume 117, Issue 3, pp 425–462 | Cite as

A mimetic discretization of the Reissner–Mindlin plate bending problem

Article

Abstract

We present a mimetic approximation of the Reissner–Mindlin plate bending problem which uses deflections and rotations as discrete variables. The method applies to very general polygonal meshes, even with non matching or non convex elements. We prove linear convergence for the method uniformly in the plate thickness.

Mathematics Subject Classification (2000)

65N30 74K20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold D.N., Falk R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bathe K. J., Brezzi F., Cho S. W.: The MITC7 and MITC9 plate bending elements. Comp. Struct. 32(3-4), 797–814 (1989)MATHCrossRefGoogle Scholar
  3. 3.
    Bathe K. J., Brezzi F., Fortin M.: Mixed-interpolated elements for Reissner–Mindlin plates. Int. J. Numer. Methods Eng. 28(8), 1787–1801 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bathe K. J., Dvorkin E. N.: A four-node plate bending element based on Mindlin–Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21(2), 367–383 (1985)MATHCrossRefGoogle Scholar
  5. 5.
    Beirão da Veiga L.: Finite element methods for a modified Reissner–Mindlin free plate model. SIAM J. Numer. Anal. 42(4), 1572–1591 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beirão da Veiga L.: A residual based error estimator for the mimetic finite difference method. Numer. Math. 108(3), 387–406 (2008)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Beirão da Veiga L.: A mimetic discretization method for linear elasticity. M2AN Math. Model. Numer. Anal. 44(2), 231–250 (2010)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Beirão da Veiga L., Gyrya V., Lipnikov K., Manzini G.: Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228(19), 7215–7232 (2009)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Beirão da Veiga L., Lipnikov K.: A mimetic discretization of the Stokes problem with selected edge bubbles. SIAM J. Sci. Comp. 32(2), 875–893 (2010)CrossRefGoogle Scholar
  10. 10.
    Beirão da Veiga L., Lipnikov K., Manzini G.: Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113(3), 325–356 (2009)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Beirão da Veiga L., Lipnikov K., Manzini G.: Error analysis for a mimetic discretization for the steady Stokes problem on polyhedral meshes. SIAM J. Numer. Anal. 48(4), 1419–1443 (2010)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Beirão da Veiga L., Manzini G.: An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems. Int. J. Numer. Methods Eng. 76(11), 1696–1723 (2008)MATHCrossRefGoogle Scholar
  13. 13.
    Beirão da Veiga L., Manzini G.: A higher-order formulation of the mimetic finite difference method. SIAM J. Sci. Comp. 31(1), 732–760 (2008)MATHCrossRefGoogle Scholar
  14. 14.
    Berndt M., Lipnikov K., Moulton J. D., Shashkov M.: Convergence of mimetic finite difference discretizations of the diffusion equation. East West J. Numer. Math. 9(4), 265–284 (2001)MATHMathSciNetGoogle Scholar
  15. 15.
    Berndt M., Lipnikov K., Shashkov M., Wheeler M. F., Yotov I.: Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43(4), 1728–1749 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Brenner S., Scott L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin/ Heidelberg (1994)MATHGoogle Scholar
  17. 17.
    Brezzi F., Buffa A., Lipnikov K.: Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal. 43(2), 277–295 (2009)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Brezzi F., Fortin M.: Analysis of some low-order finite element schemes for Mindlin–Reissner plates. Math. Comp. 47(175), 151–158 (1986)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)MATHGoogle Scholar
  20. 20.
    Brezzi F., Fortin M., Stenberg R.: Error analysis of mixed-interpolated elements for Reissner–Mindlin plates. Math. Models Methods Appl. Sci. 1(2), 125–151 (1991)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Brezzi F., Lipnikov K., Shashkov M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Brezzi F., Lipnikov K., Shashkov M., Simoncini V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196(37–40), 3682–3692 (2007)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Brezzi F., Lipnikov K., Simoncini V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Campbell J., Shashkov M.: A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172(2), 739–765 (2001)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Cangiani A., Manzini G.: Flux reconstruction and pressure post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Eng. 197(9-12), 933–945 (2008)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Cangiani A., Manzini G., Russo A.: Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. 47(4), 2612–2637 (2009)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ciarlet, P. G.: Mathematical elasticity. In: Three Dimensional Elasticity, vol. 1. North-Holland, Amsterdam (1987)Google Scholar
  28. 28.
    Droniou J., Eymard R.: Study of the mixed finite volume method for Stokes and Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 25(1), 137–171 (2009)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Droniou J., Eymard R., Gallouet T., Herbin R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume method. Math. Models Methods Appl. Sci. 20(2), 265–295 (2010)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Dupont T., Scott R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Durán R., Hernández E., Hervella-Nieto L., Liberman E., Rodríguez R.: Error estimates for low-order isoparametric quadrilateral finite elements for plates. SIAM J. Numer. Anal. 41(5), 1751–1772 (2003)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Durán R., Liberman E.: On mixed finite elements methods for the Reissner–Mindlin plate model. Math. Comp. 58(198), 561–573 (1992)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Gyrya V., Lipnikov K.: High-order mimetic finite difference method for diffusion problems on polygonal meshes. J. Comput. Phys. 227(20), 8841–8854 (2008)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Hyman J., Morel J., Shashkov M., Steinberg S.: Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6(3–4), 333–352 (2002)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Hyman J., Shashkov M.: Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion. Prog. Electromagn. Res. 32, 89–121 (2001)CrossRefGoogle Scholar
  36. 36.
    Hyman J., Shashkov M., Steinberg S.: The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132(1), 130–148 (1997)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Lipnikov K., Morel J., Shashkov M.: Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199(2), 589–597 (2004)MATHCrossRefGoogle Scholar
  38. 38.
    Lipnikov K., Shashkov M., Yotov I.: Local flux mimetic finite difference methods. Numer. Math. 112(1), 115–152 (2009)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Lyly M., Niiranen J., Stenberg R.: A refined error analysis of MITC plate elements. Math. Models Methods Appl. Sci. 16(7), 967–977 (2006)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Margolin L., Shashkov M., Smolarkiewicz P.: A discrete operator calculus for finite difference approximations. Comput. Methods Appl. Mech. Eng. 187(3-4), 365–383 (2000)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Morel J., Roberts R., Shashkov M.: A local support-operators diffusion discretization scheme for quadrilateral rz meshes. J. Comput. Phys. 144(1), 17–51 (1998)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Peisker P., Braess D.: Uniform convergence of mixed interpolated elements for Reissner–Mindlin plates. M2AN Math. Model. Numer. Anal. 26(5), 557–574 (1992)MATHMathSciNetGoogle Scholar
  43. 43.
    Pitkäranta J., Suri M.: Design principles and error analysis for reduced-shear plate-bending finite elements. Numer. Math. 75(2), 223–266 (1996)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer Ser. Comput. Math., vol. 34. Springer, New York (2005)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dipartimento di Matematica “F. Enriques”Università degli Studi di MilanoMilanItaly
  2. 2.Departamento de Matemática, Facultad de CienciasUniversidad del Bío BíoConcepciónChile
  3. 3.Centro de Investigación en Ingeniería Matemática (CI2MA)Universidad de ConcepciónConcepciónChile

Personalised recommendations