Advertisement

Numerische Mathematik

, Volume 118, Issue 1, pp 33–48 | Cite as

A posteriori error estimates for mixed finite element approximations of parabolic problems

  • Mats G. Larson
  • Axel MålqvistEmail author
Article

Abstract

We derive residual based a posteriori error estimates for parabolic problems on mixed form solved using Raviart–Thomas–Nedelec finite elements in space and backward Euler in time. The error norm considered is the flux part of the energy, i.e. weighted L 2(Ω) norm integrated over time. In order to get an optimal order bound, an elementwise computable post-processed approximation of the scalar variable needs to be used. This is a common technique used for elliptic problems. The final bound consists of terms, capturing the spatial discretization error and the time discretization error and can be used to drive an adaptive algorithm.

Mathematics Subject Classification (2000)

65M60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A.: Sobolev Spaces. Academic Press, San Diego (1978)Google Scholar
  2. 2.
    Akrivis G., Makridakis C., Nochetto R.: A posteriori error estimates for the Crank–Nicolson method for parabolic problems. Math. Comp. 75, 511–531 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed finite elements, compatibility conditions, and applications. Lecture Notes in Mathematics, vol. 1939. Springer, Berlin (2006)Google Scholar
  4. 4.
    Braess D., Verfürth R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33, 2431–2444 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Brezzi F., Fortin M.: Mixed and hybrid finite element methods. Springer, Berlin (1991)zbMATHGoogle Scholar
  6. 6.
    Carstensen C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66, 465–476 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chen L., Holst M., Xu J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78, 35–53 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Casćon J.M., Ferragut L., Asensio M.I.: Space–time adaptive algorithm for the mixed parabolic problem. Numer. Math. 103, 367–392 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dawson C., Kirby R.: Solution of parabolic equations by backward euler-mixed finite element methods on a dynamically changing mesh. SIAM J. Numer. Anal. 37(2), 423–442 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica, pp. 1–54 (1995)Google Scholar
  11. 11.
    Karakatsani F., Makridakis C.: A posteriori estimates for approximations of time-dependent Stokes equations. IMA J. Numer. Anal. 27, 741–764 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lakkis O., Makridakis C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75, 1627–1658 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Larson M.G., Målqvist A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108, 487–500 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Larsson, S., Thomée, V.: Partial differential equations. Texts in Applied Mathemtics, vol. 45. Springer, Berlin (2003)Google Scholar
  15. 15.
    Lovadina C., Stenberg R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75, 1659–1674 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Makridakis C., Nochetto R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Nédélec J.-C.: A new family of mixed finite elements in R 3. Numer. Math. 50, 57–81 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Quateroni A., Valli A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)Google Scholar
  19. 19.
    Raviart, P., Thomas, J.: A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606. Springer, Berlin, pp. 292–315 (1977)Google Scholar
  20. 20.
    Stenberg R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25, 151–167 (1991)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Thomée, V.: Galerkin finite element methods for parabolic problems 2nd edn. Series in Computational Mathematics, vol. 25. Springer, Berlin (2006)Google Scholar
  22. 22.
    Verfürth R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40, 195–212 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUmeå UniversityUmeåSweden
  2. 2.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations