Numerische Mathematik

, Volume 115, Issue 4, pp 585–608 | Cite as

Discontinuous Galerkin methods for the linear Schrödinger equation in non-cylindrical domains

  • D. C. Antonopoulou
  • M. Plexousakis


The convergence of a discontinuous Galerkin method for the linear Schrödinger equation in non-cylindrical domains of \({\mathbb{R}^m}\), m ≥ 1, is analyzed in this paper. We show the existence of the resulting approximations and prove stability and error estimates in finite element spaces of general type. When m = 1 the resulting problem is related to the standard narrow angle ‘parabolic’ approximation of the Helmholtz equation, as it appears in underwater acoustics. In this case we investigate theoretically and numerically the order of convergence using finite element spaces of piecewise polynomial functions.

Mathematics Subject Classification (2000)

65M12 65M15 65M60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamsson L., Kreiss H.-O.: Boundary conditions for the parabolic equation in range-dependent duct. J. Acoust. Soc. Am. 87(6), 2438–2441 (1990)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Akrivis G., Dougalis V.A., Zouraris G.E.: Finite difference schemes for the ‘Parabolic’ Equation in a variable depth environment with a rigid bottom boundary condition. SIAM J. Numer. Anal. 39, 539–565 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Akrivis G., Makridakis C.: Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: Math. Mod. Num. Anal. 38, 261–289 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Antonopoulou, D.C.: Theory and numerical analysis of parabolic approximations. Ph.D. Thesis, Department of Mathematics, University of Athens, 2006Google Scholar
  5. 5.
    Aziz A.K., Monk P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52, 255–274 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)zbMATHGoogle Scholar
  7. 7.
    Brocéhn, A.: Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type. Ph.D. Thesis, Department of Mathematics-Natural Science, University of Göteborg, Sweden (1980)Google Scholar
  8. 8.
    Castillo P., Cockburn B., Perugia I., Schötzau D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations, Instituto de Mathemática-UFRJ, Rio de Janeiro (1996)Google Scholar
  10. 10.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)Google Scholar
  11. 11.
    Cockburn B., Shu C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jamet P.: Estimation d’erreur pour des éleménts finis droits presque dégénérés. Rev. Francaise Automat. Informat. Recherche Opérationelle Sér. Rouge Anal. Numér. 10, 43–61 (1976)MathSciNetGoogle Scholar
  13. 13.
    Jamet P.: Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15, 913–928 (1978)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Jensen F.B., Ferla C.M.: Numerical solutions of range-dependent benchmark problems in ocean acoustics. J. Acoust. Soc. Am. 87, 1499–1510 (1990)CrossRefGoogle Scholar
  15. 15.
    Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: Computational Ocean Acoustics. AIP Series in Modern Acoustics and Signal Processing, American Institute of Physics, New York (1994)Google Scholar
  16. 16.
    Karakashian O., Makridakis C.: A space–time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67, 479–499 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lee D., McDaniel S.T.: Ocean acoustic propagation by finite difference methods. Comput. Math. Appl. 14, 305–423 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: deBoor, C., (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York (1974)Google Scholar
  19. 19.
    Lions, J.-L., Magenes, E.: Problèmes aux Limites Non Homogènes et Applications, vol. 1. Travaux et Recherches Mathématiques, No. 17, Dunod, Paris (1968)Google Scholar
  20. 20.
    Pozzi G.A.: Problemi di Cauchy e problemi ai limiti per equazioni di evoluzione del tipo di Schroedinger lineari e non lineari, Parte Prima, L’Equazione Lineare Astratta. Ann. Mat. Pur. Appl. 78, 197–258 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)Google Scholar
  22. 23.
    Sulem, C., Sulem, P-L.: The Nonlinear Scrödinger Equation. Self-Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)Google Scholar
  23. 24.
    Tappert, F.D.: The parabolic approximation method, Wave Propagation and Underwater Acoustics. In: Keller, J.B., Papadakis, J.S. (eds.) Lecture Notes in Phys., vol. 70, pp. 224–287. Springer, Berlin (1977)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of CreteHeraklionGreece
  2. 2.Institute of Applied and Computational MathematicsFO.R.T.H.HeraklionGreece

Personalised recommendations