Numerische Mathematik

, Volume 115, Issue 4, pp 609–645 | Cite as

Finite volume schemes for locally constrained conservation laws

  • Boris Andreianov
  • Paola Goatin
  • Nicolas Seguin


This paper is devoted to the numerical analysis of the road traffic model proposed by Colombo and Goatin (J. Differ. Equ. 234(2):654–675, 2007). The model involves a standard conservation law supplemented by a local unilateral constraint on the flux at the point x = 0 (modelling a road light, a toll gate, etc.). We first show that the problem can be interpreted in terms of the theory of conservation laws with discontinuous flux function, as developed by Adimurthi et al. (J. Hyperbolic Differ. Equ. 2(4):783–837, 2005) and Bürger et al. (SIAM J. Numer. Anal. 47(3):1684–1712, 2009). We reformulate accordingly the notion of entropy solution introduced by Colombo and Goatin (J. Differ. Equ. 234(2):654–675, 2007), and extend the well-posedness results to the L framework. Then, starting from a general monotone finite volume scheme for the non-constrained conservation law, we produce a simple scheme for the constrained problem and show its convergence. The proof uses a new notion of entropy process solution. Numerical examples modelling a “green wave” are presented.

Mathematics Subject Classification (2000)

35L65 65M12 76M12 90B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM (MPG 2,423 kb)


  1. 1.
    Adimurthi S.M., Veerappa Gowda G.D.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Diff. Equ. 2(4), 783–837 (2005)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of L 1-dissipative solvers for scalar conservation laws with discontinuous flux (in preparation)Google Scholar
  3. 3.
    Audusse E., Perthame B.: Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. R. Soc. Edinb. Sect. A 135(2), 253–265 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bachmann F., Vovelle J.: Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Comm. Partial Differ. Equ. 31, 371–395 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baiti P., Jenssen H.K.: Well-posedness for a class of 2 × 2 conservation laws with L data. J. Differ. Equ. 140(1), 161–185 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bürger R., García A., Karlsen K.H., Towers J.D.: A family of numerical schemes for kinematic flows with discontinuous flux. J. Eng. Math. 60(3-4), 387–425 (2008)MATHCrossRefGoogle Scholar
  7. 7.
    Bürger R., Karlsen K.H., Towers J.D.: An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 1684–1712 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen G.-Q., Frid H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147(2), 89–118 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Colombo R.M., Goatin P.: A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234(2), 654–675 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    DiPerna R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88(3), 223–270 (1985)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)Google Scholar
  12. 12.
    Karlsen, K.H., Risebro, N.H., Towers, J.D.: L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vid. Selsk. 49 pp. (2003)Google Scholar
  13. 13.
    Kružkov, S.N.: First order quasilinear equations with several independent variables. (Russian) Math. Sb., 81(2), 228–255 (1970) [English transl. in Math. USSR Sb., 10 (1970)]Google Scholar
  14. 14.
    Panov E.Yu.: Strong measure-valued solutions of the Cauchy problem for a first-order quasilinear equation with a bounded measure-valued initial function. Mosc. Univ. Math. Bull. 48(1), 18–21 (1993)MathSciNetGoogle Scholar
  15. 15.
    Panov E.Yu.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4(4), 729–770 (2007)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rusanov V.V.: The calculation of the interaction of non-stationary shock waves with barriers. Ž Vyčisl. Mat. i Mat. Fiz. 1, 267–279 (1961)MathSciNetGoogle Scholar
  17. 17.
    Seguin N., Vovelle J.: Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Model. Meth. Appl. Sci. 13(2), 221–257 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Szepessy A.: Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comp. 53(188), 527–545 (1989)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Towers, J.D.: Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38(2), 681–698 (electronic)Google Scholar
  20. 20.
    Vasseur A.: Strong traces of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Vol’pert A.I.: Spaces BV and quasilinear equations. Mat. Sb. (N.S.) 73(115), 255–302 (1967)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Boris Andreianov
    • 1
  • Paola Goatin
    • 2
  • Nicolas Seguin
    • 3
  1. 1.Laboratoire de MathématiquesUniversité de Franche-ComtéBesançon CedexFrance
  2. 2.ISITV, Université du Sud Toulon-VarLa Valette du Var CedexFrance
  3. 3.Laboratoire J.-L. Lions, UPMC Univ Paris 06Paris Cedex 05France

Personalised recommendations