Numerische Mathematik

, Volume 115, Issue 3, pp 475–509 | Cite as

A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations

Article

Abstract

The aim of this paper is to develop an hp-version a posteriori error analysis for the time discretization of parabolic problems by the continuous Galerkin (cG) and the discontinuous Galerkin (dG) time-stepping methods, respectively. The resulting error estimators are fully explicit with respect to the local time-steps and approximation orders. Their performance within an hp-adaptive refinement procedure is illustrated with a series of numerical experiments.

Mathematics Subject Classification (2000)

65M60 65J10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds): Handbook of Mathematical Functions, 9th edn. Dover, New York (1972)MATHGoogle Scholar
  2. 2.
    Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bangerth, W., Rannacher, R.: Adaptive finite element methods for differential equations. Lectures in Mathematics, ETH Zürich. Birkhäuser, Basel (2003)Google Scholar
  4. 4.
    Brunner H., Schötzau D.: hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44, 224–245 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Delfour M., Hager W., Trochu F.: Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36, 455–473 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Eriksson K., Johnson C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Eriksson K., Johnson C.: Adaptive finite element methods for parabolic problems II: Optimal error estimates in l l 2 and l l . SIAM J. Numer. Anal. 32, 706–740 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eriksson K., Johnson C.: Adaptive finite element methods for parabolic problems IV: a nonlinear model problem. SIAM J. Numer. Anal. 32, 1729–1749 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eriksson K., Johnson C.: Adaptive finite element methods for parabolic problems V: long-time integration. SIAM J. Numer. Anal. 32, 1750–1763 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Estep D.: A posteriori error bounds, global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 32, 1–48 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Estep D., French D.: Global error control for the continuous Galerkin finite element method for ordinary differential equations. RAIRO Modél. Math. Anal. Numér. 28, 815–852 (1994)MATHMathSciNetGoogle Scholar
  12. 12.
    Houston P., Süli E.: A note on the design of hp-adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 194, 229–243 (2005)MATHCrossRefGoogle Scholar
  13. 13.
    Hulme B.L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Comput. 26, 881–891 (1972)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hulme B.L.: One-step piecewise Galerkin methods for initial value problems. Math. Comput. 26, 415–425 (1972)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jamet P.: Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15, 912–928 (1978)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Johnson C.: Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 25, 908–926 (1988)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lesaint P., Raviart P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (eds) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, New York (1974)Google Scholar
  18. 18.
    Lions J.L., Magenes E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York (1972)Google Scholar
  19. 19.
    Makridakis C., Nochetto R.H.: A posteriori error analysis for higher order dissipative methods for parabolic problems. Numer. Math. 104, 489–514 (2006)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Matache A.-M., Schwab C., Wihler T.P.: Fast numerical solution of parabolic integrodifferential equations with applications in finance. SIAM J. Sci. Comput. 27, 369–393 (2005)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Matache A.-M., Schwab C., Wihler T.P.: Linear complexity solution of parabolic integro-differential equations. Numer. Math. 104, 69–102 (2006)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)Google Scholar
  23. 23.
    Schötzau D., Schwab C.: An hp a-priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37, 207–232 (2000)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schötzau D., Schwab C.: Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38, 837–875 (2000)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Schötzau D., Schwab C.: hp-discontinuous Galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Paris I 333, 1121–1126 (2001)MATHGoogle Scholar
  26. 26.
    Schwab C.: p- and hp-Finite Element Methods. Oxford University Press, Oxford (1998)Google Scholar
  27. 27.
    Szabó B., Babuška I.: Finite Element Analysis. Wiley, New York (1991)MATHGoogle Scholar
  28. 28.
    Thomée V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (1997)MATHGoogle Scholar
  29. 29.
    von Petersdorff T., Schwab C.: Numerical solution of parabolic equations in high dimensions. Math. Model. Anal. Numer. 38, 93–127 (2004)MATHCrossRefGoogle Scholar
  30. 30.
    Werder T., Gerdes K., Schötzau D., Schwab C.: hp-discontinuous Galerkin time-stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190, 6685–6708 (2001)MATHCrossRefGoogle Scholar
  31. 31.
    Wihler T.P.: An a-priori error analysis of the hp-version of the continuous Galerkin FEM for nonlinear initial value problems. J. Sci. Comput. 25, 523–549 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematics InstituteUniversität BernBernSwitzerland

Personalised recommendations