Numerische Mathematik

, Volume 115, Issue 2, pp 165–193 | Cite as

Approximation of solution operators of elliptic partial differential equations by \({\mathcal{H}}\)- and \({\mathcal{H}^2}\)-matrices

  • Steffen Börm


We investigate the problem of computing the inverses of stiffness matrices resulting from the finite element discretization of elliptic partial differential equations. Since the solution operators are non-local, the inverse matrices will in general be dense, therefore representing them by standard techniques will require prohibitively large amounts of storage. In the field of integral equations, a successful technique for handling dense matrices efficiently is to use a data-sparse representation like the popular multipole method. In this paper we prove that this approach can be generalized to cover inverse matrices corresponding to partial differential equations by switching to data-sparse \({\mathcal{H}}\)- and \({\mathcal{H}^2}\)-matrices. The key results are existence proofs for local low-rank approximations of the solution operator and its discrete counterpart, which give rise to error estimates for \({\mathcal{H}}\)- and \({\mathcal{H}^2}\)-matrix approximations of the entire matrices.

Mathematics Subject Classification (2000)

65F05 65N30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bebendorf M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bebendorf M., Hackbusch W.: Existence of \({\mathcal{H}}\)-matrix approximants to the inverse FE-matrix of elliptic operators with L -coefficients. Numer. Math. 95, 1–28 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernardi C., Girault V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35(5), 1893–1916 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Börm S.: Data-sparse approximation of non-local operators by \({\mathcal{H}^2}\)-matrices. Linear Algebra Appl. 422, 380–403 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Börm S.: Construction of data-sparse \({\mathcal{H}^2}\)-matrices by hierarchical compression. SIAM J. Sci. Comput. 31(3), 1820–1839 (2009)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Lecture Note 21 of the Max Planck Institute for Mathematics in the Sciences (2003)Google Scholar
  7. 7.
    Börm S., Hackbusch W.: Data-sparse approximation by adaptive \({\mathcal{H}^2}\)-matrices. Computing 69, 1–35 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ciarlet, P.G.: The finite element method for elliptic problems. SIAM (2002)Google Scholar
  9. 9.
    Clément P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)Google Scholar
  10. 10.
    Dahmen W., Faermann B., Graham I.G., Hackbusch W., Sauter S.A.: Inverse inequalities on non-quasiuniform meshes and applications to the mortar element method. Math. Comp. 73, 1107–1138 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Graham I.G., Lechner P., Scheichl R.: Domain decomposition for multiscale PDEs. Numer. Math. 106, 589–626 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Grasedyck, L.: Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis, Universität Kiel (2001)Google Scholar
  13. 13.
    Grasedyck L., Hackbusch W.: Construction and arithmetics of \({\mathcal{H}}\)-matrices. Computing 70, 295–334 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Grasedyck, L., Kriemann, R., LeBorne, S.: Parallel black box domain decomposition based \({\mathcal{H}}\)-LU preconditioning. Technical Report 115, Max Planck Institute for Mathematics in the Sciences, Leipzig (2005)Google Scholar
  15. 15.
    Hackbusch W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)zbMATHGoogle Scholar
  16. 16.
    Hackbusch W.: A sparse matrix arithmetic based on \({\mathcal{H}}\)-matrices. Part I: Introduction to \({\mathcal{H}}\)-matrices. Computing 62, 89–108 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hackbusch W., Khoromskij B.N., Sauter S.A.: On \({\mathcal{H}^2}\)-matrices. In: Bungartz, H., Hoppe, R., Zenger, C. (eds) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)Google Scholar
  18. 18.
    Schenk O., Gärtner K., Fichtner W., Stricker A.: PARDISO: A high-performance serial and parallel sparse linear solver in semiconductor device simulation. J. Future Gener. Comput. Syst. 18, 69–78 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Xu J., Zhu Y.: Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Models Meth. Appl. Sci. 18(1), 77–105 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations