Numerische Mathematik

, Volume 115, Issue 2, pp 309–331 | Cite as

Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations

Article

Abstract

Problems of best tensor product approximation of low orthogonal rank can be formulated as maximization problems on Stiefel manifolds. The functionals that appear are convex and weakly sequentially continuous. It is shown that such problems are always well-posed, even in the case of non-compact Stiefel manifolds. As a consequence, problems of finding a best orthogonal, strong orthogonal or complete orthogonal low-rank tensor product approximation and problems of best Tucker format approximation to any given tensor are always well-posed, even in spaces of infinite dimension. (The best rank-one approximation is a special case of all of them.) In addition, the well-posedness of a canonical low-rank approximation with bounded coefficients can be shown. The proofs are non-constructive and the problem of computation is not addressed here.

Mathematics Subject Classification (2000)

15A69 41A46 41A63 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chinnamsetty S.R., Espig M., Flad H.-J., Khoromskij B.N., Hackbusch W.: Tensor product approximation with optimal rank in quantum chemistry. J. Chem. Phys. 127, 084110 (2007)CrossRefGoogle Scholar
  2. 2.
    De Lathauwer L., De Moor B., Vandewalle J.: A multilinear singular value decomposition. SIAM. J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    De Lathauwer L., De Moor B., Vandewalle J.: On the Best Rank-1 and Rank-(r 1, r 2, . . . , r N) approximation of high-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    De Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SCCM-06-06, Stanford (2006)Google Scholar
  5. 5.
    Edelman A., Arias T., Smith S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Espig, M.: Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensionen. Phd. Thesis, MPI-MIS Leipzig, Germany (2007)Google Scholar
  7. 7.
    Gohberg I.C., Krein M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. American Mathematical Society, Providence (1969)MATHGoogle Scholar
  8. 8.
    Golub G.H., Zhang T.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23, 534–550 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Greub W.H.: Multilinear Algebra. Springer-Verlag, Berlin (1967)MATHGoogle Scholar
  10. 10.
    Hackbusch W., Khoromskij B.N.: Tensor-product approximation to operators and functions in high dimensions. J. Complexity 23, 697–714 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Håstad J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  13. 13.
    Horn R.A., Johnson C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  14. 14.
    Kolda T.G.: Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23(1), 243–255 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kolda T.G.: A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theorem for the orthogonal rank tensor decomposition. SIAM J. Matrix Anal. Appl. 24(3), 762–767 (2003)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3) (2009)Google Scholar
  17. 17.
    Kolmogorov A.N., Fomin S.V.: Elements of the Theory of Functions and Functional Analysis. Volume 1 Metric and Normed Spaces. Graylock Press, Rochester (1957)Google Scholar
  18. 18.
    Le Bris C.: A general approach for multiconfiguration methods in quantum molecular chemistry. Ann. Inst. Henri Poincaré 11(4), 441–484 (1994)MATHMathSciNetGoogle Scholar
  19. 19.
    Lieb E.H., Simon B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Temlyakov V.N.: Greedy algortihms and M-term approximation with regard to redundant dictionaries. J. Approx. Theory 98, 117–145 (1999)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Weidmann J.: Lineare Operatoren in Hilberträumen, Teil 1. Teubner Verlag, Stuttgart (2000)Google Scholar
  22. 22.
    Zeidler E.: Applied Functional Analysis. Main Principles and Their Applications. Springer-Verlag, New York (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations