Numerische Mathematik

, Volume 114, Issue 2, pp 233–270 | Cite as

Finite element error estimates for 3D exterior incompressible flow with nonzero velocity at infinity

Article

Abstract

We consider a stationary incompressible Navier–Stokes flow in a 3D exterior domain, with nonzero velocity at infinity. In order to approximate this flow, we use the stabilized P1–P1 finite element method proposed by Rebollo (Numer Math 79:283–319, 1998). Following an approach by Guirguis and Gunzburger (Model Math Anal Numer 21:445–464, 1987), we apply this method to the Navier–Stokes system with Oseen term in a truncated exterior domain, under a pointwise boundary condition on the artificial boundary. This leads to a discrete problem whose solution approximates the exterior flow, as is shown by error estimates.

Mathematics Subject Classification (2000)

Primary: 35Q30 65N30 76D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)MATHGoogle Scholar
  2. 2.
    Babenko K.I., Vasil’ev M.M.: On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body. J. Appl. Math. Mech. 37, 651–665 (1973)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bönisch S., Heuveline V., Wittwer P.: Adaptive boundary conditions for exterior flow problems. J. Math. Fluid Mech. 7, 85–107 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002)MATHGoogle Scholar
  5. 5.
    Brown R.M., Shen Z.: Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44, 1183–1206 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Deuring P.: Finite element methods for the Stokes system in three-dimensional exterior domains. Math. Methods Appl. Sci. 20, 245–269 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Deuring P.: A stable mixed finite element method on truncated exterior domains. RAIRO Modél. Math. Anal. Numér. 32, 283–305 (1998)MATHMathSciNetGoogle Scholar
  8. 8.
    Deuring P. et al.: Approximating exterior flows by flows on truncated exterior domains: piecewise polygonial artificial boundaries. In: Bemelmans, J. (eds) Elliptic and Parabolic Problems. Proceedings of the 4th European Conference, Rolduc and Gaeta, 2001, pp. 364–376. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  9. 9.
    Deuring P.: Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient. IASME Trans. 6, 900–904 (2005)MathSciNetGoogle Scholar
  10. 10.
    Deuring P.: Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: asymptotic behaviour of the second derivatives of the velocity. Commun. Partial Differ. Equ. 30, 987–1020 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Deuring P.: Stability of a finite element method for calculating 3D exterior stationary Navier-Stokes flows. Appl. Math. 52, 59–94 (2007)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Deuring P.: A finite element method for 3D exterior Oseen flows: error estimates. SIAM J. Numer. Math. 45, 1517–1543 (2007)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Deuring P., Kračmar S.: Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: approximation by flows in bounded domains. Math. Nachr. 269–270, 86–115 (2004)CrossRefGoogle Scholar
  14. 14.
    Fabes E.B., Kenig C.E., Verchota G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–792 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Farwig R.: The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211, 409–447 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Feistauer M., Schwab C.: On coupled problems for viscous flows in exterior domains. Math. Models Methods Appl. Sci. 8, 658–684 (1998)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Feistauer M., Schwab C. et al.: Coupled problems for viscous incompressible flow in exterior domains. In: Sequeira, A. (eds) Applied Nonlinear Analysis, pp. 97–116. Kluwer/Plenum, New York (1999)Google Scholar
  18. 18.
    Feistauer M., Schwab C.: Coupling of an interior Navier-Stokes problem with an exterior Oseen problem. J. Math. Fluid Mech. 3, 1–17 (2001)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Finn R.: On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Fučik S., John O., Kufner A.: Function Spaces. Noordhoff, Leyden (1977)MATHGoogle Scholar
  21. 21.
    Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I. Linearized Steady Problems (rev. edn.). Springer, New York (1998)Google Scholar
  22. 22.
    Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. II. Nonlinear Steady Problems. Springer, New York (1994)MATHGoogle Scholar
  23. 23.
    Goldstein C.I.: The finite element method with nonuniform mesh sizes for unbounded domains. Math. Comput. 36, 387–404 (1981)MATHCrossRefGoogle Scholar
  24. 24.
    Goldstein C.I.: Multigrid methods for elliptic problems in unbounded domains. SIAM J. Numer. Anal. 30, 159–183 (1993)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)MATHGoogle Scholar
  26. 26.
    Guirguis G.H., Gunzburger M.D.: On the approximation of the exterior Stokes problem in three dimensions. Model. Math. Anal. Numer. 21, 445–464 (1987)MATHMathSciNetGoogle Scholar
  27. 27.
    Gunzburger M.D.: Finite Element Methods for Viscous Incompressible Flows. Academic Press, Boston (1989)MATHGoogle Scholar
  28. 28.
    Halpern L., Schatzman M.: Artificial boundary conditions for incompressible viscous flows. SIAM J. Math. Anal. 20, 308–353 (1989)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    He Y.: Coupling boundary integral and finite element methods for the Oseen coupled problem. Comput. Math. Appl. 44, 1413–1429 (2002)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Nazarov S.A., Specovius-Neugebauer M.: Nonlinear artificial boundary conditions with pointwise error estimates for the exterior three dimensional Navier-Stokes problem. Math. Nachr. 252, 86–105 (2003)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Nečas J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967)Google Scholar
  32. 32.
    Nishida K.: Numerical method for Oseen’s linearized equations in three-dimensional exterior domains. J. Comput. Appl. Math. 152, 405–409 (2003)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Rebollo T.C.: A term by term stabilization algorithm for finite element solution of incompressible flow problems. Numer. Math. 79, 283–319 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Univ Lille Nord de FranceLilleFrance
  2. 2.ULCO, LMPACalaisFrance

Personalised recommendations