Numerische Mathematik

, Volume 114, Issue 2, pp 271–354 | Cite as

Analysis of multiple scattering iterations for high-frequency scattering problems. I: the two-dimensional case

  • Fatih EcevitEmail author
  • Fernando Reitich


We present an analysis of a recently proposed integral-equation method for the solution of high-frequency electromagnetic and acoustic scattering problems that delivers error-controllable solutions in frequency-independent computational times. Within single scattering configurations the method is based on the use of an appropriate ansatz for the unknown surface densities and on suitable extensions of the method of stationary phase. The extension to multiple-scattering configurations, in turn, is attained through consideration of an iterative (Neumann) series that successively accounts for further geometrical wave reflections. As we show, for a collection of two-dimensional (cylindrical) convex obstacles, this series can be rearranged into a sum of periodic orbits (of increasing period), each corresponding to contributions arising from waves that reflect off a fixed subset of scatterers when these are transversed sequentially in a periodic manner. Here, we analyze the properties of these periodic orbits in the high-frequency regime, by deriving precise asymptotic expansions for the “currents” (i.e. the normal derivative of the fields) that they induce on the surface of the obstacles. As we demonstrate these expansions can be used to provide accurate estimates of the rate at which their magnitude decreases with increasing number of reflections, which defines the overall rate of convergence of the multiple-scattering series. Moreover, we show that the detailed asymptotic knowledge of these currents can be used to accelerate this convergence and, thus, to reduce the number of iterations necessary to attain a prescribed accuracy.


Periodic Orbit Asymptotic Expansion Geometrical Optic Prescribe Accuracy Integral Equation Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aberegg K.R., Peterson A.F.: Application of the integral equation asymptotic phase method to two-dimensional scattering. IEEE Trans. Antennas Propag. 43, 534–537 (1995)CrossRefGoogle Scholar
  2. 2.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas. Graphs, and Mathematical Tables. Dover Publications, New York (1972)zbMATHGoogle Scholar
  3. 3.
    Amini S., Profit A.: Multi-level fast multipole solution of the scattering problem. Eng. Anal. Bound. Elem. 27, 547–564 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Banjai L., Hackbusch W.: Hierarchical matrix techniques for low- and high-frequency Helmholtz problems. IMA J. Numer. Anal. 28(1), 46–79 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bleistein N., Handelsman R.A.: Asymptotic Expansions of Integrals. Dover Publications, New York (1986)Google Scholar
  6. 6.
    Bruno O.P., Geuzaine C.A., Monroe J.A., Reitich F.: Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Phil. Trans. R. Soc. London 362, 629–645 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bruno O.P., Geuzaine C.A., Reitich F.: On the \({\mathcal{O}}\) (1) solution of multiple-scattering problems. IEEE Trans. Magn. 41, 1488–1491 (2005)CrossRefGoogle Scholar
  8. 8.
    Bruno O.P., Kunyansky L.A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests and applications. J. Comp. Phys. 169, 80–110 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Chandler-Wilde S.N., Langdon S.: A Galerkin boundary element method for high frequency scattering by convex polygons. SIAM J. Numer. Anal. 45(2), 610–640 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chernov, N.I.: Construction of transverse fiberings in multidimensional semidispersed billiards. (Russian) Funktsional. Anal. i Prilozhen. 16(4), 35–46, 96 (1982)Google Scholar
  11. 11.
    Chew W.C., Song J.M., Cui T.J., Velamparambil S., Hastriter M.L., Hu B.: Review of large scale computing in electromagnetics with fast integral equation solvers. CMES Comput. Model. Eng. Sci. 5, 361–372 (2004)zbMATHGoogle Scholar
  12. 12.
    Colton D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)zbMATHGoogle Scholar
  13. 13.
    Constantine G.M., Savits T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Cuvelier F.: Approximation de Kirchhoff généralisée dans le complémentaire d’une réunion de convexes (French) (Generalized Kirchhoff approximation outside a union of convex compact sets). C. R. Acad. Sci. Paris Sér. I Math. 320(12), 1501–1506 (1995)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Darve E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160, 195–240 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Dominguez V., Graham I.G., Smyshlyaev V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106(3), 471–510 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Fedoryuk M.V.: The stationary phase method and pseudodifferential operators. Russian Math Surv. 26(1), 65–115 (1971)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Gerard C.: Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes. Bull. de S.M.F. 116(31), 146 (1988)MathSciNetGoogle Scholar
  19. 19.
    Giladi E., Keller J.B.: A hybrid numerical asymptotic method for scattering problems. J. Comput. Phys. 174, 226–247 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego (2000)zbMATHGoogle Scholar
  21. 21.
    Hassan O., Morgan K., Jones J., Larwood B., Weatherill N.P.: Parallel 3D time domain electromagnetic scattering simulations on unstructured meshes. CMES Comput. Model. Eng. Sci. 5, 383–394 (2004)zbMATHGoogle Scholar
  22. 22.
    Hesthaven J.S., Warburton T.: High-order accurate methods for time-domain electromagnetics. CMES Comput. Model. Eng. Sci. 5, 395–408 (2004)zbMATHGoogle Scholar
  23. 23.
    Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. Singular integrals. In: Proceedings of Sympos. Pure Math., vol. X, pp. 138–183, Chicago, Ill., 1966). Amer. Math. Soc., Providence (1967)Google Scholar
  24. 24.
    Hörmander L.: Fourier integral operators. I. Acta Math 127(1–2), 79–183 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Huybrechs D., Vandewalle S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Ikawa M.: Decay of solutions of the wave equation in the exterior of two convex obstacles. Osaka J. Math. 19(3), 459–509 (1982)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Ikawa M.: Decay of solutions of the wave equation in the exterior of several convex bodies. Ann. Inst. Fourier 38, 113–146 (1988)MathSciNetzbMATHGoogle Scholar
  28. 28.
    James R.M.: A contribution to scattering calculation for small wavelengths of the high frequency panel method. IEEE Trans. Antennas Propag. 38, 1625–1630 (1990)CrossRefGoogle Scholar
  29. 29.
    Johnson W.P.: The curious history of Faà di Bruno’s formula. Am. Math. Monthly 109(3), 217–234 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    Ling R.T.: Numerical solution for the scattering of sound waves by a circular cylinder. AIAA J. 25, 560–566 (1987)CrossRefGoogle Scholar
  31. 31.
    Ludwig D.: Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, 215–250 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Melrose R.B., Taylor M.E.: Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Namburu R.R., Mark E.R., Clarke J.A.: Scalable electromagnetic simulation environment. CMES Comput. Model. Eng. Sci. 5, 443–453 (2004)zbMATHGoogle Scholar
  34. 34.
    Perrey-Debain E., Trevelyan J., Bettess P.: Use of wave boundary elements for acoustic computations. J. Comput. Acoust. 11, 305–321 (2003)CrossRefGoogle Scholar
  35. 35.
    Petkov V.M., Stoyanov L.N.: Geometry of Reflecting Rays and Inverse Spectral Problems. Wiley, New York (1992)zbMATHGoogle Scholar
  36. 36.
    Rieben R.N., Rodrigue G.H., White D.A.: A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids. J. Comp. Phys. 204, 490–519 (2005)CrossRefzbMATHGoogle Scholar
  37. 37.
    Sinai Y.G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat. Nauk 25, 141–192 (1970) (Russian)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Sinai Y.G.: Developments of Krylov ideas. An addendum to the book. In: Krylov, N.S. (eds) Works on the Foundations of Statistical Physics, Princeton University Press, Princeton (1979)Google Scholar
  39. 39.
    Sherer, S.E., Visbal, M.R.: Time-domain scattering simulations using a high-order overset-grid approach. In: Proc. 2005 IEEE Workshop on Computational Electromagnetics in the Time-Domain, pp. 44–47Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsBoğaziçi UniversityBebek, IstanbulTurkey
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations