Numerische Mathematik

, 114:107 | Cite as

A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem



In this paper, we analyze a residual-type a posteriori error estimator of the finite volume element method for a quasi-linear elliptic problem of nonmonotone type and derive computable upper and lower bounds on the error in the H 1-norm. Numerical experiments are provided to illustrate the performance of the proposed estimator.

Mathematics Subject Classification (2000)

65N15 65N30 


  1. 1.
    Ainsworth M., Oden J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)MATHGoogle Scholar
  2. 2.
    Arnold D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Babuska I., Strouboulis T.: The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001)Google Scholar
  4. 4.
    Bangerth W., Rannacher R.: Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics, ETH-Zürich. Birkhäuser, Basel (2003)Google Scholar
  5. 5.
    Bank R.E., Rose D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bergam A., Mghazli Z., Verfürth R.: Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire. Numer. Math. 95, 599–624 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bi C.: Superconvergence of finite volume element method for a nonlinear elliptic problem. Numer. Methods PDEs 23, 220–233 (2007)MATHMathSciNetGoogle Scholar
  8. 8.
    Bi C., Ginting V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brenner S., Scott R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)MATHGoogle Scholar
  10. 10.
    Cai Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Carstensen C., Lazarov R., Tomov S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chatzipantelidis P.: Finite volume methods for elliptic PDE’s: a new approach. Math. Model. Numer. Anal. 36, 307–324 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chatzipantelidis P., Ginting V., Lazarov R.: A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12, 515–546 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chou S.H., Li Q.: Error estimates in L 2, H 1 and L in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69, 103–120 (2000)MATHMathSciNetGoogle Scholar
  15. 15.
    Chou S.H., Kwak D.Y.: Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90, 459–486 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATHGoogle Scholar
  17. 17.
    Douglas J. Jr, Dupont T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comput. 29, 689–696 (1975)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ewing R.E., Lin T., Lin Y.P.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gudi T., Pani A.K.: Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45, 163–192 (2007)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hlaváček I., Křížek M.: On a nonpotential and nonmonotone second order elliptic problem with mixed boundary conditions. Stability Appl. Anal. Contin. Media 3, 85–97 (1993)Google Scholar
  21. 21.
    Hlavek I., Křížek M., Malý J.: On Galerkin approximations of a quasi-linear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184, 168–189 (1994)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Huang J., Xi S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35, 1762–1774 (1998)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lazarov R., Tomov S.: A posteriori error estimates for finite volume approximations of convection-diffusion-reaction equations. Comput. Geosci. 6, 483–503 (2002)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lazarov R., Tomov S.: Adaptive finite volume element method for convection-diffusion-reaction problems in 3d. In: Minev, Y.W.P., Lin, Y. (eds) Scientific Computing and Application., pp. 91–106. Nova Science Publishing House, Huntington (2001)Google Scholar
  25. 25.
    Li R., Chen Z., Wei W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)MATHGoogle Scholar
  26. 26.
    Lin Q., Zhu Q.: The Preprocessing and Postprocessing for the Finite Element Methods. Shanghai Scientific and Technical Publishers, Shanghai (1994)Google Scholar
  27. 27.
    Liu L., Křížek M., Neittaanmäki P.: Higher order finite element approximation of a quasilinear elliptic boundary value problem of a nonmonotone type. Appl. Math. 41, 467–478 (1996)MATHMathSciNetGoogle Scholar
  28. 28.
    Liu L., Liu T., Křížek M., Lin T., Zhang S.H.: Global superconvergence and a posteriori error estimators of the finite element method for a quasi-linear elliptic boundary value problem of nonmonotone type. SIAM J. Numer. Anal. 42, 1729–1744 (2004)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Milner F.A.: Mixed finite element methods for quasilinear second-order elliptic problems. Math. Comput. 44, 1–22 (1985)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Mishev I.D.: Finite volume element methods for non-definite problems. Numer. Math. 83, 161–175 (1999)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Neittaanmäki P., Repin S.: Reliable methods for mathematical modelling. Error control and a posteriori estimates. Elsevier, New York (2004)Google Scholar
  32. 32.
    Rannacher R., Scott R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 15, 1–22 (1982)MathSciNetGoogle Scholar
  33. 33.
    Schatz A.H., Thomée V., Wahlbin L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33, 265–304 (1980)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary condition. Math. Comput. 54, 483–493 (1990)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Verfrth R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)Google Scholar
  36. 36.
    Wu H., Li R.: Error estimates for finite volume element methods for general second order elliptic problem. Numer. Methods PDEs 19, 693–708 (2003)MATHGoogle Scholar
  37. 37.
    Xu J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Xu, J., Zhu, Y., Zou, Q.: New adaptive finite volume methods and convergence analysis. Numer. Math. (submitted). Available online at

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsYantai UniversityShandongPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of WyomingLaramieUSA

Personalised recommendations