Numerische Mathematik

, Volume 113, Issue 4, pp 497–518

Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements

  • Annalisa Buffa
  • Patrick CiarletJr.
  • Erell Jamelot
Article

Abstract

A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method required a parameterization of the variational formulation. In order to avoid this difficulty, we use a mixed variational setting instead of the parameterization, which allows us to handle the divergence-free constraint on the field in a straightforward manner. The numerical analysis of the method is carried out, and numerical examples are provided to show the efficiency of our approach.

Mathematics Subject Classification (2000)

35Q60 (PDEs, Eqs of EM theory and optics) 65N25 (Numerical analysis, eigenvalue problems) 78M10 (Optics & EM theory, finite element methods) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999)Google Scholar
  3. 3.
    Assous F., Ciarlet P. Jr, Garcia E., Segré J.: Time-dependent Maxwell’s equations with charges in singular geometries. Comput. Methods Appl. Mech. Eng. 196, 665–681 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Assous F., Ciarlet P. Jr, Segré J.: Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys. 161, 218–249 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Assous F., Ciarlet P. Jr, Sonnendrücker E.: Resolution of the Maxwell equations in a domain with reentrant corners. Modél. Math. Anal. Numér. 32, 359–389 (1998)MATHGoogle Scholar
  6. 6.
    Assous F., Degond P., Heintzé E., Raviart P.-A., Segré J.: On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222–237 (1993)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North Holland, Amsterdam (1991)Google Scholar
  8. 8.
    Boffi D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34, 664–670 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Boffi, D.: Compatible discretizations for eigenvalue problems. In: Compatible Spatial Discretizations, IMA Volumes in Mathematics and its Applications, vol. 142, pp. 121–142. Springer, Berlin (2006)Google Scholar
  10. 10.
    Boffi D., Brezzi F., Gastaldi L.: On the convergence of eigenvalues for mixed formulations. Annali Sc. Norm. Sup. Pisa Cl. Sci. 25, 131–154 (1997)MATHMathSciNetGoogle Scholar
  11. 11.
    Brenner S., Li F., Sung L.-Y.: A locally divergence-free interior penalty method for two dimensional curl–curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer, Berlin (1991)Google Scholar
  13. 13.
    Ciarlet P. Jr: Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Eng. 194, 559–586 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ciarlet P. Jr, Garcia E., Zou J.: Solving Maxwell equations in 3D prismatic domains. C. R. Acad. Sci. Paris, Ser. I 339, 721–726 (2004)MATHMathSciNetGoogle Scholar
  15. 15.
    Ciarlet P. Jr, Girault V.: Inf-sup condition for the 3D, P 2isoP 1 Taylor–Hood finite element; application to Maxwell equations. C. R. Acad. Sci. Paris, Ser. I 335, 827–832 (2002)MATHMathSciNetGoogle Scholar
  16. 16.
    Ciarlet, P. Jr., Hechme, G.: Mixed, augmented variational formulations for Maxwell’s equations: numerical analysis via the macroelement technique. Numer. Math. (submitted)Google Scholar
  17. 17.
    Ciarlet P. Jr, Hechme G.: Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comput. Methods Appl. Mech. Eng. 198, 358–365 (2008)MathSciNetGoogle Scholar
  18. 18.
    Costabel M.: A coercive bilinear form for Maxwell’s equations. J. Math. An. Appl. 157, 527–541 (1991)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Costabel M., Dauge M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol. 31, pp. 125–161. Springer, Berlin (2003)Google Scholar
  21. 21.
    Costabel M., Dauge M., Schwab C.: Exponential convergence of hp-FEM for Maxwell’s equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15, 575–622 (2005)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dauge, M.: Benchmark computations for Maxwell equations for the approximation of highly singular solutions (2004). See Monique Dauge’s personal web page at the location http://perso.univ-rennes1.fr/monique.dauge/core/index.html
  23. 23.
    Garcia, E.: Solution to the instationary Maxwell equations with charges in non-convex domains (in French). Ph.D. Thesis, Université Paris VI, France (2002)Google Scholar
  24. 24.
    Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)Google Scholar
  25. 25.
    Hazard C., Lohrengel S.: A singular field method for Maxwell’s equations: numerical aspects for 2D magnetostatics. SIAM J. Appl. Math. 40, 1021–1040 (2002)MATHMathSciNetGoogle Scholar
  26. 26.
    Heintzé, E.: Solution to the 3D instationary Maxwell equations with conforming finite elements (in French). Ph.D. Thesis, Université Paris VI, France (1992)Google Scholar
  27. 27.
    Jamelot E.: Éléments finis nodaux pour les équations de Maxwell. C. R. Acad. Sci. Paris, Sér. I 339, 809–814 (2004)MathSciNetGoogle Scholar
  28. 28.
    Jamelot, E.: Solution to Maxwell equations with continuous Galerkin finite elements (in French). Ph.D. Thesis, École Polytechnique, Palaiseau, France (2005)Google Scholar
  29. 29.
    Labrunie, S.: The Fourier singular complement method for Maxwell equations in axisymmetric domains (in French). Technical Report 2004-42, Institut Elie Cartan, Nancy I University, Vandœuvre-lès-Nancy, France (2004)Google Scholar
  30. 30.
    Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sorokina T., Worsey A.J.: A multivariate Powell–Sabin interpolant. Adv. Comput. Math. 29, 71–89 (2008)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Weber C.: A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2, 12–25 (1980)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Annalisa Buffa
    • 1
  • Patrick CiarletJr.
    • 2
  • Erell Jamelot
    • 2
  1. 1.IMATI-CNRPaviaItaly
  2. 2.Laboratoire POEMS, UMR 7231 CNRS/ENSTA/INRIAÉcole Nationale Supérieure de Techniques AvancéesParis Cedex 15France

Personalised recommendations