Numerische Mathematik

, Volume 113, Issue 2, pp 243–264 | Cite as

Error analysis of variational integrators of unconstrained Lagrangian systems

  • George W. PatrickEmail author
  • Charles Cuell


An error analysis of variational integrators is obtained, by blowing up the discrete variational principles, all of which have a singularity at zero time-step. Divisions by the time step lead to an order that is one less than observed in simulations, a deficit that is repaired with the help of a new past–future symmetry.

Mathematics Subject Classification (2000)

65L05 49S05 70H 37J 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M. (eds.): Discrete Differential Geometry. Birkhäuser Verlag, Boston (2008)Google Scholar
  2. 2.
    Bobenko, A.I., Suris, Y.B.: Discrete differential geometry. Consistency as integrability. arXiv:math.DG/0504358v1, (2005)Google Scholar
  3. 3.
    Bou-Rabee N., Marsden J.E.: Hamilton–Pontryagin integrators on Lie groups part I: Introduction and structure-preserving properties. Found. Comput. Math. 9, 197–219 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cuell C., Patrick G.W.: Skew critical problems. Regul. Chaotic Dyn. 12, 589–601 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cuell, C., Patrick, G.W.: Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J. Geom. Phys. 59, 976–997 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall Inc., New Jersey (1963). [Revised English edition translated and edited by Richard A. Silverman]Google Scholar
  7. 7.
    Marsden J.E., Patrick G.W., Shkoller S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Comm. Math. Phys. 199, 351–395 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Marsden J.E., West M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Patrick, G.W.: Two axially symmetric coupled rigid bodies: relative equilibria, stability, bifurcations, and a momentum preserving symplectic integrator. PhD thesis, University of California at Berkeley (1991)Google Scholar
  10. 10.
    Patrick G.W.: Lagrangian mechanics without ordinary differential equations. Rep. Math. Phys. 57, 437–443 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Weinstein A.: Lagrangian mechanics and groupoids. Fields Inst. Comm. 7, 207–231 (1996)Google Scholar
  12. 12.
    Wendlandt J.M., Marsden J.E.: Discrete integrators derived from a discrete variational principle. Phys. D 106, 233–246 (1997)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Yoshimura H., Marsden J.E.: Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems. J. Geom. Phys. 57, 133–156 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yoshimura H., Marsden J.E.: Dirac structures in Lagrangian mechanics. II. Variational structures. J. Geom. Phys. 57, 209–250 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, Applied Mathematics and Mathematical PhysicsUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations