Advertisement

Numerische Mathematik

, Volume 113, Issue 2, pp 163–180 | Cite as

Smoothness equivalence properties of univariate subdivision schemes and their projection analogues

  • Philipp GrohsEmail author
Article

Abstract

We study the following modification of a linear subdivision scheme S: let M be a surface embedded in Euclidean space, and P a smooth projection mapping onto M. Then the P-projection analogue of S is defined as T := PS. As it turns out, the smoothness of the scheme T is always at least as high as the smoothness of the underlying scheme S or the smoothness of P minus 1, whichever is lower. To prove this we use the method of proximity as introduced by Wallner et al. (Constr Approx 24(3):289–318, 2006; Comput Aided Geom Design 22(7):593–622, 2005). While smoothness equivalence results are already available for interpolatory schemes S, this is the first result that confirms smoothness equivalence properties of arbitrary order for general non-interpolatory schemes.

Mathematics Subject Classification (2000)

41AXX 41A25 53B 22E 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bump D.: Lie Groups. Springer, New York (2004)zbMATHGoogle Scholar
  2. 2.
    Donoho, D.L.: Wavelet-type representation of Lie-valued data, 2001. Talk at the IMI “Approximation and Computation” meeting, May 12–17, 2001. Charleston, South CarolinaGoogle Scholar
  3. 3.
    Dyn N.: Subdivision schemes in computer-aided geometric design. In: Light, W.A. (eds) Advances in Numerical Analysis, vol. II, pp. 36–104. Oxford University Press, Oxford (1992)Google Scholar
  4. 4.
    Grohs, P.: Smoothness of multivariate interpolatory subdivision in Lie groups. IMA J. Numer. Anal. (2009, to appear)Google Scholar
  5. 5.
    Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. ACHA. (2009, to appear). http://www.geometrie.tugraz.at/wallner/wav.pdf
  6. 6.
    Grohs P., Wallner J.: Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties. In: Neamtu, M., Schumaker, L.L. (eds) Approximation Theory XII: San Antonio 2007, pp. 181–190. Nashboro Press, Brentwood (2008)Google Scholar
  7. 7.
    Higham N.: Matrix nearness problems and applications. In: Gover, M.J.C., Barnett, S. (eds) Applications of Matrix Theory, pp. 1–27. Oxford University Press, New York (1989)Google Scholar
  8. 8.
    Micchelli C.A., Cavaretta A., Dahmen W.: Stationary Subdivision. American Mathematical Society, Boston (1991)Google Scholar
  9. 9.
    Wallner J.: Smoothness analysis of subdivision schemes by proximity. Constr. Approx. 24(3), 289–318 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Wallner J., Dyn N.: Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22(7), 593–622 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wallner J., Nava Yazdani E., Grohs P.: Smoothness properties of Lie group subdivision schemes. Multiscale Model. Simul. 6, 493–505 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wallner J., Pottmann H.: Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph. 25(6), 356–374 (2006)CrossRefGoogle Scholar
  13. 13.
    Wilf H.S.: Generating Functionology. Academic Press, London (1994)Google Scholar
  14. 14.
    Xie G., Yu T.P.-Y.: Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach. SIAM J. Numer. Anal. 45(3), 1220–1225 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Yu T.P.-Y.: Cutting corners on the sphere. In: Chen, G., Lai, M.-J. (eds) Wavelets and Splines: Athens 2005, pp. 496–506. Nasboro Press, Brentwood (2006)Google Scholar
  16. 16.
    Yu T.P.-Y.: How data dependent is a nonlinear subdivision scheme? A case study based on convexity preserving subdivision. SIAM J. Numer. Anal. 44(3), 936–948 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Yu, T.P.-Y.: Smoothness equivalence properties of interpolatory Lie group subdivision schemes. IMA J. Numer. Anal. (2009, to appear)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.TU GrazInstitute of GeometryGrazAustria

Personalised recommendations