Numerische Mathematik

, Volume 112, Issue 2, pp 221–243 | Cite as

Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods

  • J. Guzmán
  • D. Leykekhman
  • J. Rossmann
  • A. H. Schatz


A model second-order elliptic equation on a general convex polyhedral domain in three dimensions is considered. The aim of this paper is twofold: First sharp Hölder estimates for the corresponding Green’s function are obtained. As an applications of these estimates to finite element methods, we show the best approximation property of the error in \({W^1_{\infty}}\) . In contrast to previously known results, \({W_p^{2}}\) regularity for p > 3, which does not hold for general convex polyhedral domains, is not required. Furthermore, the new Green’s function estimates allow us to obtain localized error estimates at a point.

Mathematics Subject Classification (2000)

65N30 65N15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asadzadeh, M., Schatz, A.H., Wendland, W.: Asymptotic Error Expansions for the Finite Element Method for Second Order Elliptic Problems in \({\mathbb{R}^N}\) , N ≥ 2. I: Local Interior Expansions. Math. Comp. (2009, in press)Google Scholar
  2. 2.
    Asadzadeh, M., Schatz, A.H., Wendland, W.: A Non-Standard Approach to Richardson Extrapolation in the Finite Element Method for Second Order Elliptic Problems, preprint, Chalmers University of Technology, Göteborg UniversityGoogle Scholar
  3. 3.
    Brenner, S., Scott, R.: Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)Google Scholar
  4. 4.
    Carey, V.: A Posteriori Error Estimation via Recovered Gradients. Dissertation, Cornell University (2005)Google Scholar
  5. 5.
    Chen Z., Chen H.: Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems. SIAM J. Numer. Anal. 42, 1146–1166 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Demlow A.: Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems. SIAM J. Numer. Anal. 44(2), 494–514 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Demlow, A.: Weighted Residual Estimators for a Posteriori Estimation of Pointwise Gradient Errors in Quasilinear Elliptic Problems, preprintGoogle Scholar
  8. 8.
    Demlow A.: Sharply localized pointwise and \({W_\infty^{-1}}\) estimates for finite element methods for quasilinear problems. Math. Comp. 76, 1725–1741 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Douglas J. Jr, Dupont T.: A Galerkin methods for a nonlinear Dirichlet problem. Math. Comp. 29, 689–696 (1975)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dupont T., Scott R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34, 441–463 (1980)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Frehse J., Rannacher R.: Asymptotic L -error estimates for linear finite element approximations of quasilinear boundary value problems. SIAM J. Numer. Anal. 15(2), 418–431 (1978)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fromm S.: Potential space estimates for Green potentials in convex domains. Proc. Amer. Math. Soc. 119(1), 225–233 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Girault V., Nochetto R.H., Scott R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84(9), 279–330 (2005)MATHMathSciNetGoogle Scholar
  14. 14.
    Guzmán J.: Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems. Math. Comp. 75, 1067–1085 (2006)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grüter M., Widman K.-O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982)MATHCrossRefGoogle Scholar
  16. 16.
    Hoffmann W., Schatz A.H., Wahlbin L.B., Wittum G.: Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: a smooth problem and globally quasi-uniform meshes. Math. Comp. 70, 897–909 (2001)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kozlov V.A., Maz’ya V.G., Rossmann J.: Spectral Problems Assosoated with Corner Singularities of Solutions to Elliptic Equations, Mathematical Surveys and Monographs, vol. 85. Amer. Math. Soc., Providence (2001)Google Scholar
  18. 18.
    Krasovskii, J.P.: Properties of Green’s Function and Generalized Solutions of Elliptic Boundary Value Problems, Soviet Mathematics (Translations of Doklady Academy of Sciences of the USSR), 102, pp. 54–120 (1969)Google Scholar
  19. 19.
    Maz’ya V.G., Roßmann J.: On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains. Ann. Glob. Anal. Geom. 9(3), 253–303 (1991)MATHCrossRefGoogle Scholar
  20. 20.
    Maz’ya V.G., Roßmann J.: Point estimates for Green’s matrix to boundary value problems for second order systems in a polyhedral cone. Z. Angew. Math. Mech. 82(5), 291–316 (2002)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Maz’ya V.G., Roßmann J.: Weighted L p estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains. Z. Angew. Math. Mech. 83(7), 435–467 (2003)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Maz’ya V.G., Roßmann J.: Schauder estimates for solutions to a mixed boundary value problem for the Stokes system in polyhedral domains. Math. Methods Appl. Sci. 29, 965–1017 (2006)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Natterer F.: Uber die punktweise Konvergenz finiter Elemente. Numer. Math. 25, 67–77 (1975)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Nitsche, J.A.: L convergence of finite element approximations. In: Proceedings Second Conference on Finite Elements, Rennes, France (1975)Google Scholar
  25. 25.
    Nitsche, J.A.: L Convergence of Finite Element Approximations, Mathematical Aspects of Finite Element Methods. Lecture Notes in Math., vol. 606, pp. 261–274. Springer, Berlin (1977)Google Scholar
  26. 26.
    Nitsche J.A., Schatz A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comp. 28, 937–958 (1974)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Rannacher R.: Zur L -Konvergenz linearer finiter Elemente beim Dirichlet-Problem. Math. Zeitschrift 149, 69–77 (1976)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Rannacher R., Scott R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 158, 437–445 (1982)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Saavedra P., Scott R.: Variational formulation of a model free-boundary problem. Math. Comp. 57, 451–475 (1991)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Schatz A.H.: A weak discrete maximum principle and stability of the finite element method in L on the plane polygonal domains. I. Math. Comp. 34, 77–91 (1980)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Schatz A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part 1. Math. Comp. 67, 877–899 (1998)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Schatz A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. II. Interior estimates. SIAM J. Numer. Anal. 38(4), 1269–1293 (2000)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Schatz A.H.: Perturbations of forms and error estimates for the finite element method at a point, with an application to improved superconvergence error estimates for subspaces that are symmetric with respect to a point. SIAM J. Numer. Anal. 42(6), 2342–2365 (2005)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Schatz A.H., Wahlbin L.B.: Interior maximum norm estimates for finite element methods. Math. Comp. 31, 414–442 (1977)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Schatz A.H., Wahlbin L.B.: On the quasi-optimality in L of the \({\overset\circ{H^1}}\) -projection into finite element spaces. Math. Comp. 38, 1–22 (1982)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Schatz A.H., Wahlbin L.B.: Interior maximum norm estimates for finite element methods II. Math. Comp. 64, 907–928 (1995)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Scholz R.: A mixed method for 4th order problems using linear finite elements. RAIRO Anal. Numer. 12(1), 85–90 (1978)MATHMathSciNetGoogle Scholar
  38. 38.
    Scott L.R.: Optimal L estimates for the finite element method. Math. Comp. 30, 681–697 (1976)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Wahlbin L.B.: Local behavior in finite element methods, Handbook of Numerical Analysis, vol, II. In: Ciarlet, P.G., Lions, J.L. (eds) Finite Element Methods (Part 1), pp. 355–522. Elsevier, Amsterdam (1991)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. Guzmán
    • 1
  • D. Leykekhman
    • 2
  • J. Rossmann
    • 3
  • A. H. Schatz
    • 4
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of MathematicsUniversity of ConnecticutStorrsUSA
  3. 3.Institut für MathematikUniversität RostockRostockGermany
  4. 4.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations