Advertisement

Numerische Mathematik

, Volume 112, Issue 1, pp 41–64 | Cite as

Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients

  • A. Jentzen
  • P. E. Kloeden
  • A. Neuenkirch
Article

Abstract

We study the approximation of stochastic differential equations on domains. For this, we introduce modified Itô–Taylor schemes, which preserve approximately the boundary domain of the equation under consideration. Assuming the existence of a unique non-exploding solution, we show that the modified Itô–Taylor scheme of order γ has pathwise convergence order γε for arbitrary ε > 0 as long as the coefficients of the equation are sufficiently differentiable. In particular, no global Lipschitz conditions for the coefficients and their derivatives are required. This applies for example to the so called square root diffusions.

Mathematics Subject Classification (2000)

65C30 60H35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfonsi A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11, 355–384 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allen E.: Modelling with Itô Stochastic Differential Equations. Springer, Dordrecht (2007)Google Scholar
  3. 3.
    Arnold L.: Random Dynamical Systems. Springer, Berlin (1998)zbMATHGoogle Scholar
  4. 4.
    Bossy, M., Diop, A.: An efficient discretisation scheme for one dimensional SDEs with a diffusion coefficient function of the form |x|α, α ∈ [1/2,1). Working paper (2004)Google Scholar
  5. 5.
    Deelstra G., Delbaen F.: Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stoch. Models Data Anal. 14, 77–84 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fleury G.: Convergence of schemes for stochastic differential equations. Prob. Eng. Mech. 21, 35–43 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gaines J.G., Lyons T.J.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57, 1455–1484 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Grüne L., Kloeden P.E.: Pathwise approximation of random ordinary differential equations. BIT 41, 711–721 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gyöngy I.: A note on Euler’s approximations. Potential Anal. 8, 205–216 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Higham D.J., Mao X.: Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comp. Finance 8, 35–61 (2005)Google Scholar
  11. 11.
    Higham D.J., Mao X., Stuart A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041–1063 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hu, Y.: Semi-implicit Euler–Maruyama scheme for stiff stochastic equations. In: Koerezlioglu, H. (ed.) Stochastic Analysis and Related Topics V: The Silvri Workshop, Progr. Prob. 38, Boston, pp. 183–202 (1996)Google Scholar
  13. 13.
    Kahl C., Günther M., Rossberg T.: Structure preserving stochastic integration schemes in interest rate derivative modeling. Appl. Numer. Math. 58, 284–295 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Karlin S., Taylor H.M.: A Second Course in Stochastic Processes. Academic Press, New York (1981)zbMATHGoogle Scholar
  15. 15.
    Karatzas I., Shreve S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)zbMATHGoogle Scholar
  16. 16.
    Kloeden P.E., Neuenkirch A.: The pathwise convergence of approximation schemes for stochastic differential equations. LMS JCM 10, 235–253 (2007)MathSciNetGoogle Scholar
  17. 17.
    Kloeden P.E., Platen E.: Numerical Solution of Stochastic Differential equations, 3rd edn. Springer, Berlin (1999)Google Scholar
  18. 18.
    Lamba H., Mattingly J.C., Stuart A.M.: An adaptive Euler–Maruyama scheme for SDEs: convergence and stability. IMA J. Numer. Anal. 27, 479–506 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lord, R., Koekkoek, R., van Dijk, D.J.C.: A Comparison of Biased Simulation Schemes for Stochastic Volatility Models. Working Paper (2008)Google Scholar
  20. 20.
    Mao X., Marion G., Renshaw E.: Environmental Brownian noise suppresses explosions in populations dynamics. Stoch. Process. Apl. 97, 95–110 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mao X.: Stochastic Differential Equations and their Applications. Horwood Publishing, Chichester (1997)zbMATHGoogle Scholar
  22. 22.
    Milstein G.N., Tretjakov M.V.: Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. 43, 1139–1154 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ninomiya S., Victoir N.: Weak approximation of stochastic differential equations and application to derivative pricing. Appl. Math. Finance 15, 107–121 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Talay D.: Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9, 275–306 (1983)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Yan L.: The Euler scheme with irregular coefficients. Ann. Probab. 30, 1172–1194 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Johann Wolfgang Goethe-UniversitätInstitut für MathematikFrankfurt am MainGermany

Personalised recommendations