Numerische Mathematik

, Volume 111, Issue 2, pp 251–266 | Cite as

An algorithm for the fast solution of symmetric linear complementarity problems

  • José Luis Morales
  • Jorge Nocedal
  • Mikhail Smelyanskiy


This paper studies algorithms for the solution of mixed symmetric linear complementarity problems. The goal is to compute fast and approximate solutions of medium to large sized problems, such as those arising in computer game simulations and American options pricing. The paper proposes an improvement of a method described by Kocvara and Zowe (Numer Math 68:95–106, 1994) that combines projected Gauss–Seidel iterations with subspace minimization steps. The proposed algorithm employs a recursive subspace minimization designed to handle severely ill-conditioned problems. Numerical tests indicate that the approach is more efficient than interior-point and gradient projection methods on some physical simulation problems that arise in computer game scenarios.

Mathematics Subject Classification (2000)

65K05 90C30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ageia physx. Web page. (2006)
  2. 2.
    Anitescu M., Potra F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertsekas D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221–246 (1982)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Birgin E.G., Martínez J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Birgin E.G., Martínez J.M., Raydan M.: Nonmonotone spectral projected gradient methods on convex sets. SIOPT 10, 1196–1211 (2000)MATHGoogle Scholar
  6. 6.
    Birgin E.G., Martínez J.M., Raydan M.: Algorithm 813: Spg-software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Burke J.V., Moré J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25(5), 1197–1211 (1998)CrossRefGoogle Scholar
  8. 8.
    Catto, E.: Iterative dynamics with temporal coherence. Technical report, Crystal Dynamics, Menlo Park (2005)Google Scholar
  9. 9.
    Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25(182):433–460 (1988) [See also SIAM J. Numer. Anal. 26:764–767 (1989)]Google Scholar
  10. 10.
    Conn A.R., Gould N.I.M., Toint Ph.L.: LANCELOT: a Fortran package for Large-scale Nonlinear Optimization (Release A). Springer Series in Computational Mathematics. Springer, Heidelberg (1992)MATHGoogle Scholar
  11. 11.
    Cottle R.W., Dantzig G.B.: Complementarity pivot theory of mathematical programming. J. Linear Algebra Applns 1, 103–125 (1968)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cottle R.W., Pang J.-S., Stone R.E.: The Linear Complementarity Problem. Academic Press, London (1992)MATHGoogle Scholar
  13. 13.
    Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100 (2005)Google Scholar
  14. 14.
    Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with COPS 3.0. Technical Report ANL/MCS-TM-273, Argonne National Laboratory, Argonne (2004)Google Scholar
  15. 15.
    Ferris M.C., Pang J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ferris M.C., Wathen A.J., Armand P.: Limited memory solution of bound constrained convex quadratic problems arising in video games. RAIRO Oper. Res. 41, 19–34 (2007)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hager W.W., Zhang H.: A new active set algorithm for box constrained optimization. SIOPT 17(2), 526–557 (2007)MathSciNetGoogle Scholar
  18. 18.
    Havok, F.X.: Web page. (2006)
  19. 19.
    Kocvara M., Zowe J.: An iterative two-step algorithm for linear complementarity problems. Numer. Math. 68, 95–106 (1994)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kumar, S., Hughes, C.J., Nguyen, A. Carbon: architectural support for fine-grained parallelism on chip multiprocessors. In: Proceedings of IEEE/ACM International Symposium on Computer Architecture (ISCA), San Diego (2007)Google Scholar
  21. 21.
    Lin C.J., Moré J.J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9(4), 1100–1127 (1999)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Morales J.L, Sargent R.W.H.: Computational experience with several methods for large-scale convex quadratic programming. Aportaciones Matemáticas. Comunicaciones 14, 141–158 (1994)Google Scholar
  23. 23.
    Moré J.J., Toraldo G.: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1(1), 93–113 (1991)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    O’Leary D.P.: A generalized conjugate gradient algorithm for solving a class of quadratic programming problems. Linear Algebra Appl. 34, 371–399 (1980)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Schenk, O.: Scalable parallel sparse LU factorization methods on shared memory multiprocessors. PhD thesis, Swiss Federal Institute of Technology, Zurich (2000)Google Scholar
  26. 26.
    Schenk O., Gärtner K.: Solving unsymmetric sparse systems of linear equations with pardiso. J. Future Generation Comput. Syst. 20(3), 475–487 (2004)CrossRefGoogle Scholar
  27. 27.
    Schenk O., Gärtner K.: On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)MATHGoogle Scholar
  28. 28.
    Smelyanskiy, M., Lee, V. W., Kim, D., Nguyen, A.D., Dubey, P.: Scaling performance of interior-point methods on a large-scale chip multiprocessor system. In: SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing (2007)Google Scholar
  29. 29.
    Smith, R.: Open dynamics engine. Technical report. (2004)
  30. 30.
    Wilmott P.: Quantitative Finance. Wiley, London (2006)MATHGoogle Scholar
  31. 31.
    Wright S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)MATHGoogle Scholar
  32. 32.
    Zhu C., Byrd R.H., Lu P., Nocedal J.: Algorithm 78: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • José Luis Morales
    • 1
  • Jorge Nocedal
    • 2
  • Mikhail Smelyanskiy
    • 3
  1. 1.Departamento de MatemáticasInstituto Tecnológico Autónomo de MéxicoMexico CityMexico
  2. 2.Department of Electrical Engineering and Computer ScienceNorthwestern UniversityChicagoUSA
  3. 3.The Intel CorporationSanta ClaraUSA

Personalised recommendations