Numerische Mathematik

, Volume 109, Issue 4, pp 489–507 | Cite as

Convergence of an implicit, constraint preserving finite element discretization of p-harmonic heat flow into spheres

  • Sören Bartels
  • Andreas Prohl


We propose an implicit discretization of the p-harmonic map heat flow into the sphere S 2 that enjoys a discrete energy inequality and converges under only a mild mesh constraint to a weak solution. A fully practical iterative scheme that approximates the solution of the nonlinear system of equations in each time step is proposed and analyzed. Computational studies to motivate possible finite-time blow-up behavior of solutions for p ≠ 2 are included.

Mathematics Subject Classification (2000)

65M12 65M60 35K55 35Q35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alouges, F., Jaisson, P.: Convergence of a finite elements discretization for the Landau Lifshitz equations. Math. Models Methods Appl. Sci. 16, 299–316 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bartels, S., Prohl, A.: Constraint preserving implicit finite element discretization of harmonic heat flow into spheres. Math. Comp. 76, 1847–1859 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bartels, S., Prohl, A.: Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation. SIAM J. Numer. Anal. 44, 1405–1419 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Barrett, J.W., Bartels, S., Feng, X., Prohl, A.: A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J. Numer. Anal. 45, 905–927 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bethuel, F., Zheng, X.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60–75 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Barrett, J.W., Liu, W.B.: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68, 437–456 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Chang, K.-C., Ding, W.-Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differantial Geom. 36, 507–515 (1992)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201, 69–74 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Chen, Y., Hong, M.-C., Hungerbühler, N.: Heat flow of p-harmonic maps with values into spheres. Math. Z. 215, 25–35 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen, Y., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Courilleau, P., Demengel, F.: Heat flow for p-harmonic maps with values in the circle. Nonlinear Anal. 41, 689–700 (2000)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fardoun, A., Regbaoui, R.: Heat flow for p-harmonic map with small initial data. Calc. Var. Partial Differ. Equ. 16, 1–16 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Fardoun, A.: On weakly p-harmonic maps to a closed hemisphere. Manuscripta Math. 116, 57–69 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Girault, V., Raviart, P.A.: Finite Element Method for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1981)Google Scholar
  15. 15.
    Hungerbühler, N.: Heat flow into spheres for a class of energies. Progr. Nonlinear Differ. Equ. Appl. 59, 45–65 (2004)Google Scholar
  16. 16.
    Hungerbühler, N.: Non-uniqueness for the p-harmonic flow. Can. Math. Bull. 40, 174–182 (1997)zbMATHGoogle Scholar
  17. 17.
    Hungerbühler, N.: p-Harmonic flow. Diss. Math. Wiss. ETH Zürich, Nr. 10740 (1994)Google Scholar
  18. 18.
    Hungerbühler, N.: Global weak solutions to the p-harmonic flow into homogeneous spaces. Indiana Univ. Math. J. 45, 275–288 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Misawa, M.: Approximation of p-harmonic maps by the penalized equation. Nonlinear Anal. 47, 1069–1080 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Misawa, M.: On the p-harmonic flow into spheres in the singular case. Nonlinear Anal. 50, 485–494 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Prohl, A., Ruzicka, M.: On fully implicit space–time discretization for motions of incompressible fluids with shear-dependent viscosities: the case p ≤ 2. SIAM J. Numer. Anal. 39, 214–249 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Struwe, M.: Geometric evolution problems. IAS/Park City Math. Ser. 2, 259–339 (1996)MathSciNetGoogle Scholar
  23. 23.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Numerische SimulationUniversität BonnBonnGermany
  2. 2.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations