Numerische Mathematik

, Volume 109, Issue 3, pp 435–457 | Cite as

Stability of the 8-tetrahedra shortest-interior-edge partitioning method

Article

Abstract

We consider a tetrahedron partitioning method, known in the literature as the 8-tetrahedra shortest-interior-edge partition. For this method, which is a variant of Freudenthal’s algorithm in three space dimensions, we prove that the infinite series of refined meshes (for any given initial mesh) is stable in the sense that the degree of degeneracy of the cells remains bounded. We give an explicit estimate in terms of a standard shape quality measure introduced by Liu and Joe. Furthermore, we show that our estimate is sharp. The estimate also holds for Freudenthal’s algorithm (in three space dimensions) provided that it is initialized appropriately. Numerical experiments confirm our result as well as its sharpness.

Mathematics Subject Classification (2000)

65N50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank, R., Sherman, A., Weiser, A.: Refinement algorithms and data structures for regular local mesh refinement. In: Stepleman, R. (ed.) Scientific Computing, pp. 3–17. North-Holland, Amsterdam (1983)Google Scholar
  2. 2.
    Bey, J.: Tetrahedral grid refinement. Computing 55, 355–378 (1995)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bey, J.: Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numerische Mathematik 85, 1–29 (2000)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. 43(3), 580–582 (1942)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Groß, S., Reusken, A.: Parallel multilevel tetrahedral grid refinement. SIAM J. Sci. Comput. 26(4), 1261–1288 (2005)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22(3–4), 237–254 (2006). doi:10.1007/s00366-006-0049-3 CrossRefGoogle Scholar
  7. 7.
    Liu, A., Joe, B.: On the shape of tetrahedra from bisection. Math. Comp. 63, 141–154 (1994)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Liu, A., Joe, B.: Relationship between tetrahedron shape measures. BIT 34, 268–287 (1994)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans Math Softw 15(4), 326–347 (1989)CrossRefMATHGoogle Scholar
  10. 10.
    Ohlberger, M., Rumpf, M.: Adaptive projection operators in multiresolutional scientific visualization. IEEE Trans Vis Comput Graph 4(4), 344–364 (1998)CrossRefGoogle Scholar
  11. 11.
    Plaza, A.: The eight-tetrehedra longest-edge partition and Kuhn triangulations. Comput. Math. Appl. 54, 427–433 (2007)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Plaza, A., Padrón, M.A., Suárez, J.P.: Non-degeneracy study of the 8-tetrehedra longest-edge partition. Appl. Numer. Math. 55, 458–472 (2005)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Rivara, M.C.: Mesh refinement processes based on the generalized bisection of simplices. SIAM J. Numer. Anal. 21(3), 604–613 (1984)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Rivara, M.C., Levin, C.: A 3-D refinement algorithm suitable for adaptive and multi-grid techniques. Comm. Appl. Numer. Methods 8, 281–290 (1992)CrossRefMATHGoogle Scholar
  15. 15.
    Xu, J., Zikatanov, L.: A monotone finite element scheme for convection-diffusion equations. Math. Comp. 68(228), 1429–1446 (1999)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Zhang, S.: Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Math. 21(3), 541–556 (1995)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Center for Complex Systems and VisualizationUniversity of BremenBremenGermany

Personalised recommendations