Numerische Mathematik

, Volume 109, Issue 3, pp 415–434

Local and parallel finite element algorithms for the stokes problem

Article

Abstract

Based on two-grid discretizations, some local and parallel finite element algorithms for the Stokes problem are proposed and analyzed in this paper. These algorithms are motivated by the observation that for a solution to the Stokes problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. One technical tool for the analysis is some local a priori estimates that are also obtained in this paper for the finite element solutions on general shape-regular grids.

Mathematics Subject Classification (2000)

65N15 65N30 76M10 76D07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R. (1975). Sobolev Spaces. Academic Press Inc., New York MATHGoogle Scholar
  2. 2.
    Arnold D.N., Brezzi F. and Fortin M. (1984). A stable finite element for the Stokes equations. Calc. 21: 337–344 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arnold D.N. and Liu X. (1995). Local error estimates for finite element discretizations of the Stokes equations. RAIRO M2AN 29: 367–389 MATHMathSciNetGoogle Scholar
  4. 4.
    Bank R.E. and Holst M. (2000). A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci. Comput. 22: 1411–1443 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bank R.E. and Holst M. (2003). A new paradigm for parallel adaptive meshing algorithms. SIAM Rev. 45: 291–323 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ciarlet P.G. and Lions J.L. (1991). Handbook of Numerical Analysis,Vol.II, Finite Element Methods (Part I). Elsevier Science Publisher, Amsterdam Google Scholar
  7. 7.
    Crouzeix M. and Raviart P.-A. (1973). Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7(R–3): 33–76 MathSciNetGoogle Scholar
  8. 8.
    Fortin, M.: Calcul numérique des ecoulements fluides de Bingham et des fluides Newtoniens incompressible par des méthodes d’eléments finis, Université de Paris VI, Doctoral thesis (1972)Google Scholar
  9. 9.
    Girault V. and Raviart P.A. (1986). Finite Element Approximation of the Navier-Stokes Equations—Theory and Algorithms. Springer, Berlin Google Scholar
  10. 10.
    Hood P. and Taylor C. (1973). A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1: 73–100 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ma F., Ma Y. and Wo W. (2007). Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. 28: 27–35 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ma Y., Zhang Z. and Ren C. (2006). Local and parallel finite element algorithms based on two-grid discretization for the stream function from of Navier-Stokes equations. Appl. Math. Comput. 175: 786–813 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mansfield L. (1982). Finite element subspaces with optimal rates of convergence for stationary Stokes problem. RAIRO Anal. Numér. 16: 49–66 MATHMathSciNetGoogle Scholar
  14. 14.
    Nitsche J. and Schatz A.H. (1974). Interior estimates for Ritz-Galerkin methods. Math. Comp. 28: 937–055 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Schatz A.H. and Wahlbin L.B. (1977). Interior maximum-norm estimates for finite element methods. Math. Comp. 31: 414–442 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Schatz A.H. and Wahlbin L.B. (1995). Interior maximum-norm estimates for finite element methods, Part II. Math. Comp. 64: 907–928 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shen, L.: Parallel Adaptive Finite Element Algorithms for Electronic Structure Computing Based on Density Functional Theory. PhD Thesis. Academy of Mathematics and Systems Science, Chinese Acade my of Sciences (2005)Google Scholar
  18. 18.
    Temam R. (1984). Navier Stokes Equations. North-Holland, Amsterdam MATHGoogle Scholar
  19. 19.
    Wahlbin L.B. (1991). Local behavior in finite element methods. In: Ciarlet, P.G. and Lions, J.L. (eds) Handbook of Numerical Analsis. Finite Element Methods (Part I), vol. II, pp 355–522. North-Holland, Amsterdam Google Scholar
  20. 20.
    Wahlbin L.B. (1995). Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Math., vol. 1605. Springer, Heidelberg Google Scholar
  21. 21.
    Xu J. (1992). Iterative methods by space decomposition and subspace correction. SIAM Rev. 34: 581–613 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Xu J. (1992). A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29: 303–319 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Xu J. (1994). A novel two-grid method for semilinear equations. SIAM J. Sci. Comp. 15: 231–237 MATHCrossRefGoogle Scholar
  24. 24.
    Xu J. (1759). Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33: 1759–1777 CrossRefGoogle Scholar
  25. 25.
    Xu, J., Zhou, A.: Some local and parallel properties of finite element discretizations. In: Lai, C.H., Bjøsted, P.E., Cross, M., Widlund, O.B. (eds) Procedings of 11th International Conference on DDM DDM.org, pp. 140–147 (1999)Google Scholar
  26. 26.
    Xu J. and Zhou A. (2000). Local and parallel finite element algorithms based on two-grid discretizations. Math. Comp. 69: 881–909 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Xu J. and Zhou A. (2001). Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comp. Math. 14: 293–327 MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Xu J. and Zhou A. (2002). Local and parallel finite element algorithms for eigenvalue problems. Acta Math. Appl. Sin. Engl. Ser. 18: 85–200 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Faculty of ScienceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Laboratory of Pure and Applied Mathematics, School of Mathematical SciencesPeking UniversityBeijingPeople’s Republic of China
  3. 3.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  4. 4.LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations