Numerische Mathematik

, Volume 108, Issue 3, pp 445–485 | Cite as

Energy-conserved splitting FDTD methods for Maxwell’s equations

  • Wenbin ChenEmail author
  • Xingjie Li
  • Dong Liang


In this paper, two new energy-conserved splitting methods (EC-S-FDTDI and EC-S-FDTDII) for Maxwell’s equations in two dimensions are proposed. Both algorithms are energy-conserved, unconditionally stable and can be computed efficiently. The convergence results are analyzed based on the energy method, which show that the EC-S-FDTDI scheme is of first order in time and of second order in space, and the EC-S-FDTDII scheme is of second order both in time and space. We also obtain two identities of the discrete divergence of electric fields for these two schemes. For the EC-S-FDTDII scheme, we prove that the discrete divergence is of first order to approximate the exact divergence condition. Numerical dispersion analysis shows that these two schemes are non-dissipative. Numerical experiments confirm well the theoretical analysis results.

Mathematics Subject Classification (2000)

65N10 65N15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brekhovskikh L.M. (1980). Waves in Layered Media. Academic, New York zbMATHGoogle Scholar
  2. Dai W. and Raja N. (1995). A new ADI scheme for solving three-dimensional parabolic equations with first-order derivatives and variable coefficients. J. Comput. Anal. Appl. 122: 223–250 Google Scholar
  3. Crandall C.G. and Majda A. (1980). The method of fractional steps for conservation laws. Numer. Math. 34: 285–314 zbMATHCrossRefMathSciNetGoogle Scholar
  4. Kim S. and Douglas J. Jr (2001). Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Models Methods Appl. Sci. 11: 1563–1579 zbMATHCrossRefMathSciNetGoogle Scholar
  5. Rachford H.H. and Douglas J. Jr (1956). On the numerical solution of heat conduction problems in two and three space wariables. Trans. Am. Math. Soc. 82: 421–439 zbMATHCrossRefMathSciNetGoogle Scholar
  6. Eyges L. (1972). The Classical Electromagnetic Fields. Addison-Wesley, Reading Google Scholar
  7. Feng K. and Qin M. (2003). Symplectic Geometric Algorithms for Hamiltonian Systems (in chinese). Zhejiang Science & Technology Press, Hangzhou Google Scholar
  8. Fortin M. and Brezzi F. (1991). Mixed and Hybrid Finite Elements Methods. Springer, New York Google Scholar
  9. Gao L., Zhang B. and Liang D. (2007). The splitting-difference time-domain methods for Maxwell’s equations in two dimensions. J. Comput. Appl. Math. 205: 207–230 zbMATHCrossRefMathSciNetGoogle Scholar
  10. Gedney S.D., Liu G., Roden J.A. and Zhu A. (2001). Perfectly matched layer media with CFS for an unconditional stable ADI-FDTD method. IEEE Trans. Antennas Propagation 49: 1554–1559 zbMATHCrossRefGoogle Scholar
  11. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations. Springer Series in Computational Mathematic, vol 31. Springer, Heidelberg (2002)Google Scholar
  12. Holland R. (1984). Implicit three-dimensional finite differencing of Maxwell’s equations. IEEE Trans. Nucl. Sci. 31: 1322–1326 CrossRefGoogle Scholar
  13. Ihlenburg, F.: Finite element analysis of acoustic scattering. Applied mmathematical Sciences, vol 132. Springer, Heidelberg (1998)Google Scholar
  14. Karlsen K.H. and Lie K.-A. (1999). An unconditionally stable splitting scheme for a class of nonlinear parabolic equations. IMA J. Numer. Anal. 19: 1–28 CrossRefMathSciNetGoogle Scholar
  15. Leis R. (1986). Initial Boundary Value Problems in Mathematical Physics. Wiley, New York zbMATHGoogle Scholar
  16. Liang D., Du C. and Wang H. (2007). A fractional step ELLAM approach to high-dimensional convection-diffusion problems with forward particle tracking. J. Comput. Phys. 221: 198–225 zbMATHCrossRefMathSciNetGoogle Scholar
  17. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations, 2nd edn. Cambridge University Press, (2005)Google Scholar
  18. Monk P. (2003). Finite Element Methods for Maxwell’s Equations. Clarendon press, Oxford zbMATHGoogle Scholar
  19. Namiki T. (1999). A new FDTD algorithm based on alternating direction implicit method. IEEE Trans. Microwave Theory Tech. 47: 2003–2007 CrossRefGoogle Scholar
  20. Peaceman D.W. and Rachford H.H. (1955). The numerical soltuion of parabolic and elliptic differentce equations. J. Soc. Ind. Appl. Math. 3: 28–41 zbMATHCrossRefMathSciNetGoogle Scholar
  21. Strang G. (1968). On the construction and comparison of difference scheme. SIAM J. Numer. Anal. 5: 506–517 zbMATHCrossRefMathSciNetGoogle Scholar
  22. Taflove A. and Brodwin M.E. (1975). Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microwave Theory Tech. 23: 623–630 CrossRefGoogle Scholar
  23. Yanenko, N.N.: The Method of Fractional Steps: The Soltuions of Problems of Mathematical Physics in Several Variables, English translation edited by M.Holt. Springer, Heidelberg (1971)Google Scholar
  24. Zhao A.P. (2002). Analysis of the numerical dispersion of the 2-D alternating-direction implicit FDTD method. IEEE Trans. Microwave Theory Tech. 50: 1156–1164 CrossRefGoogle Scholar
  25. Zhang F. and Chen Z. (2000). Numerical dispersion analysis of the unconditionally stable ADI-FDTD method. IEEE Trans. Microwave Theory Tech. 49: 1006–1009 CrossRefGoogle Scholar
  26. Zheng F., Chen Z. and Zhang J. (2000). Toward the development of a three-dimensional unconditionally stable finite-difference-time-domain method. IEEE Trans. Microwave Theory Tech. 48: 1550–1558 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of MathematicsFudan UniversityShanghaiPeople’s Republic of China
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations