Numerische Mathematik

, Volume 108, Issue 3, pp 407–444 | Cite as

Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system

  • Martin Campos Pinto
  • Michel Mehrenberger


An adaptive semi-Lagrangian scheme for solving the Cauchy problem associated to the periodic 1+1-dimensional Vlasov-Poisson system in the two- dimensional phase space is proposed and analyzed. A key feature of our method is the accurate evolution of the adaptive mesh from one time step to the next one, based on a rigorous analysis of the local regularity and how it gets transported by the numerical flow. The accuracy of the scheme is monitored by a prescribed tolerance parameter ε which represents the local interpolation error at each time step, in the L metric. The numerical solutions are proved to converge in L towards the exact ones as ε and Δt tend to zero provided the initial data is Lipschitz and has a finite total curvature, or in other words, that it belongs to \({W^{1,\infty} \cap W^{2,1}}\) . The rate of convergence is \({\mathcal{O}({\Delta}t^2 + \varepsilon/{\Delta}t)}\) , which should be compared to the results of Besse who recently established in (SIAM J Numer Anal 42(1):350–382, 2004) similar rates for a uniform semi-Lagrangian scheme, but requiring that the initial data are in \({{\mathcal C}^2}\) . Several numerical tests illustrate the effectiveness of our approach for generating the optimal adaptive discretizations.

Mathematical Subject Classification (2000)

65M12 65M50 82D10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arsen’ev, A.: Global existence of a weak solution of Vlasov’s system of equations. U.S.S.R. Comput. Math. Math. Phys. 15(1), 131–143 (1975)CrossRefGoogle Scholar
  2. 2.
    Bardos, C., Degond, P.: Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 101–118 (1985)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Differ. Equ. 25(3), 342–364 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)zbMATHCrossRefGoogle Scholar
  5. 5.
    Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Besse, N.: Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM J. Numer. Anal. 42(1), 350–382 (2004) (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Besse, N., Filbet, F., Gutnic, M., Paun, I., Sonnendrücker, E.: An adaptive numerical method for the Vlasov equation based on a multiresolution analysis. In: Brezzi, F., Buffa, A., Escorsaro, S., Murli, A.(eds) Numerical Mathematics and Advanced Applications ENUMATH 2001, pp. 437–446. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Besse, N., Mehrenberger, M.: Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system. Math. Comput. 77, 93–123 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Besse, N., Sonnendrücker, E.: Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. J. Comput. Phys. 191(2), 341–376 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. McGraw-Hill, New York (1985)Google Scholar
  12. 12.
    Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetGoogle Scholar
  13. 13.
    Campos Pinto, M.: Développement et analyse de schémas adaptatifs pour les équations de transport. U. P. et M. Curie, Paris, 2005. PhD Thesis (in french)Google Scholar
  14. 14.
    Campos Pinto, M.: A total curvature diminishing property for P 1 finite element interpolation. Math. Forschungs. Oberwolfach Report, 34/2004, 2005Google Scholar
  15. 15.
    Campos Pinto, M., Mehrenberger, M.: Adaptive numerical resolution of the Vlasov equation. Numerical methods for hyperbolic and kinetic problems, CEMRACS 2003/IRMA Lectures in Math. and Theoretical Physics, 2005Google Scholar
  16. 16.
    Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)CrossRefGoogle Scholar
  17. 17.
    Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23(3), 805–823 (2001) (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, vol. II, pp. 17–351. North-Holland, Amsterdam (1991)Google Scholar
  19. 19.
    Cohen, A.: Numerical analysis of wavelet methods, volume 32 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (2003)Google Scholar
  20. 20.
    Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72(241), 183–225 (2003) (electronic)zbMATHCrossRefGoogle Scholar
  21. 21.
    Cooper, J., Klimas, A.: Boundary value problems for the Vlasov-Maxwell equation in one dimension. J. Math. Anal. Appl. 75(2), 306–329 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dahmen, W.: Adaptive approximation by multivariate smooth splines. J. Approx. Theory 36(2), 119–140 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dahmen, W., Gottschlich-Müller, B., Müller, S.: Multiresolution schemes for conservation laws. Numer. Math. 88(3), 399–443 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Dahmen, W., Müller, S., Schlinkmann, T.: On an adaptive multigrid solver for convection-dominated problems. SIAM J. Sci. Comput. 23(3), 781–804 (2001) (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)MathSciNetGoogle Scholar
  27. 27.
    Filbet, F., Sonnendrücker, E.: Numerical methods for the Vlasov equation. In: Brezzi, F., Buffa, A., Escorsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2001. Springer, Heidelberg, 2001Google Scholar
  28. 28.
    Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Comm. 150(3), 247–266 (2003)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Glassey, R.T.: The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)Google Scholar
  30. 30.
    Griebel, M., Oswald, P.: Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math 4, 171–206 (1999)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Gutnic, M., Haefele, M., Paun, I., Sonnendrücker, E.: Vlasov simulations on an adaptive phase-space grid. Comput. Phys. Commun. 164, 214–219 (2004)CrossRefGoogle Scholar
  32. 32.
    Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115(2), 319–338 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation I. General theory. Math. Methods Appl. Sci. 3(2), 229–248 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation II. Special cases. Math. Methods Appl. Sci. 4(1), 19–32 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Houston, P., Süli, E.: Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Technical Report NA-95/24, Oxford University Computing Lab., 1995. Published in Math. Comp. 70(233), 77–106 (2001)zbMATHGoogle Scholar
  37. 37.
    Iordanskii, S.V.: The Cauchy problem for the kinetic equation of plasma. Am. Math. Soc. Transl. Ser. 2(35), 351–363 (1964)Google Scholar
  38. 38.
    Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105(2), 415–430 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris (1967)Google Scholar
  40. 40.
    Rault, A., Chiavassa, G., Donat, R.: Shock-vortex interactions at high Mach numbers. J. Sci. Comput. 19(1-3), 347–371 (2003) Special issue in honor of the sixtieth birthday of Stanley OsherGoogle Scholar
  41. 41.
    Raviart, P.-A.: An analysis of particle methods. In: Numerical methods in fluid dynamics (Como, 1983), volume 1127 of Lecture Notes in Math., pp. 243–324. Springer, Berlin, 1985Google Scholar
  42. 42.
    Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188(2), 493–523 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Partial Differ. Equ. 16(8–9), 1313–1335 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Sonnendrücker, E., Filbet, F., Friedman, A., Oudet, E., Vay, J.L.: Vlasov simulation of beams with a moving grid. Comput. Phys. Commun. 164, 390–395 (2004)CrossRefGoogle Scholar
  45. 45.
    Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Yserentant, H.: Hierarchical bases. In: ICIAM 91 (Washington, DC, 1991), pp. 256–276. SIAM, Philadelphia (1992)Google Scholar
  47. 47.
    Zenger, C.: Sparse grids. In Parallel algorithms for partial differential equations (Kiel, 1990), volume 31 of Notes Numer. Fluid Mech., pp. 241–251. Vieweg, Braunschweig (1991)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions, UMR CNRS 7598Université Pierre et Marie CurieParisFrance
  2. 2.Institut de Recherche Mathématique Avancée, UMR CNRS 7501Université Louis PasteurStrasbourgFrance

Personalised recommendations