Advertisement

Numerische Mathematik

, Volume 108, Issue 2, pp 263–293 | Cite as

Two-scale numerical simulation of the weakly compressible 1D isentropic Euler equations

  • Emmanuel Frénod
  • Alexandre MoutonEmail author
  • Eric Sonnendrücker
Article

Keywords

Mach Number Euler Equation Homogenize Model Volume Scheme Local Truncation Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ailliot P., Frénod E. and Monbet V. (2006). Long term object drift in the ocean with tide and wind. Multiscale Modell. Simul. 5(2): 514–531 zbMATHCrossRefGoogle Scholar
  2. 2.
    Allaire G. (1992). Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6): 1482–1518 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fortenbach, R., Frénod, E., Klein, R., Munz, C.-D., Sonnendrücker, E.: Multiple scale consideration for sound generation in low Mach number flow. In: 8th DFG Workshop on French German Research Program Numerical Flow Simulation, Oct. 2001Google Scholar
  4. 4.
    Frénod E., Raviart P.A. and Sonnendrücker E. (2001). Two-scale expansion of a singularly perturbed convection equation. J. Pure Appl. Math. 80(8): 815–843 zbMATHCrossRefGoogle Scholar
  5. 5.
    Frénod, E., Salvarani, F., Sonnendrücker, E.: Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method (in preparation)Google Scholar
  6. 6.
    Frénod E. and Sonnendrücker E. (2000). Long time behavior of the Vlasov equation with a strong external magnetic field. Math. Models Methods Appl. Sci. 10(4): 539–553 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Frénod E. and Sonnendrücker E. (2001). The finite Larmor radius approximation. SIAM J. Math. Anal. 32(6): 1227–1247 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Godunov, S.-K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik, vol. 47, pp.271–306 (1959). Translated US Joint Publ. Res. Service, JPRS 7226 (1969)Google Scholar
  9. 9.
    Grenier E. (2001). Oscillatory pertubation of the Navier–Stokes equations. J. Math. Pure Appl. 76: 477–498 MathSciNetGoogle Scholar
  10. 10.
    Klainerman S. and Majda A. (1981). Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of the compressible fluids. Commun. Pure Appl. Math. 34(4): 481–524 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Klainerman S. and Majda A. (1982). Compressible and imcompressible fluids. Commun. Pure Appl. Math. 35(5): 629–651 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, London (2002)Google Scholar
  13. 13.
    Lions J.-L. (1969). Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Gauthier-Villars zbMATHGoogle Scholar
  14. 14.
    Majda A. (1984). Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Academic, New York zbMATHGoogle Scholar
  15. 15.
    Marusic-Paloka E. and Piatnitski A. (2005). Homogenization of nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection. J. Lond. Math. Soc. 72(2): 391–409 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Métivier G. and Schochet S. (2001). The incompressible limit of the non-isotropic Euler equations. Arch. Ration. Mech. Anal. 158: 61–90 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Munz, C.-D.: Computational fluid dynamics and aeroacoustics for low Mach number flow. Unpublished (personal communication)Google Scholar
  18. 18.
    Nguetseng G. (1989). A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3): 608–623 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Roe P.-L. (1981). Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43: 357–372 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Schochet S. (1988). Asymptotic for symmetric hyperbolic systems with a large parameter. J. Differ. Equ. 75: 1–27 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schochet S. (1994). Fast singular limit of hyperbolic pdes. J. Differ. Equ. 114: 476–512 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schochet S. (1986). Symmetric hyperbolic systems with a large parameter. Commun. PDE 11(15): 1627–1651 zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Schochet S. (1986). The compressible Euler equations in a bounded domain existence of solutions and the incompressible limit. Commun. Math. Phys. 104: 46–75 CrossRefMathSciNetGoogle Scholar
  24. 24.
    Serre D. (1999). Systems of Conservations Laws 1. Cambridge University Press, London Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Emmanuel Frénod
    • 1
  • Alexandre Mouton
    • 2
    Email author
  • Eric Sonnendrücker
    • 2
  1. 1.LÉMEL & LMAMUniversité Européenne de BretagneVannesFrance
  2. 2.IRMAUniversité Louis PasteurStrasbourgFrance

Personalised recommendations