Numerische Mathematik

, Volume 107, Issue 4, pp 533–557 | Cite as

Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition

  • Santiago BadiaEmail author
  • Ramon Codina


In this paper we obtain convergence results for the fully discrete projection method for the numerical approximation of the incompressible Navier–Stokes equations using a finite element approximation for the space discretization. We consider two situations. In the first one, the analysis relies on the satisfaction of the inf-sup condition for the velocity-pressure finite element spaces. After that, we study a fully discrete fractional step method using a Poisson equation for the pressure. In this case the velocity-pressure interpolations do not need to accomplish the inf-sup condition and in fact we consider the case in which equal velocity-pressure interpolation is used. Optimal convergence results in time and space have been obtained in both cases.

Mathematics Subject Classification (2000)

35Q30 65M12 65M60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badia, S.: Stabilized Pressure Segregation Methods and their Application to Fluid-Structure Interaction Problems. PhD Thesis, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya, Barcelona (2006)Google Scholar
  2. 2.
    Blasco J. and Codina R. (2001). Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier–Stokes equations. Appl. Numer. Math. 38: 475–497 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brenner S.C. and Scott L.R. (1994). The Mathematical Theory of Finite Element Methods. Springer, Heidelberg zbMATHGoogle Scholar
  4. 4.
    Chorin A.J. (1967). The Numerical Solution of the Navier–Stokes Equations for an Incompressible Fluid. AEC Research and Development Report, NYO-1480-82. New York University, New York Google Scholar
  5. 5.
    Chorin A.J. (1968). Numerical solution of the Navier–Stokes equations. Math. Comput. 22: 745–762 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Codina R. (2001). Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys. 170: 112–140 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Codina R. and Badia S. (2006). On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems. Comput. Meth. Appl. Mech. Eng. 195: 2900–2918 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Codina R. and Blasco J. (1997). A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput. Meth. Appl. Mech. Eng. 143: 373–391 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Codina R. and Blasco J. (2000). Analysis of a pressure-stabilized finite element approximation of the stationary Navier–Stokes equations. Numer. Math. 87: 59–81 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Constantin P. and Foias C. (1988). Navier–Stokes Equations. University of Chicago Press, Chicago and London zbMATHGoogle Scholar
  11. 11.
    de Rham, G. (1973). Variétés Différentiables Formes, Courants, Formes Harmoniques. Hermann, Paris zbMATHGoogle Scholar
  12. 12.
    Fernández M.A., Gerbeau J.F. and Grandmont C. (2007). A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69(4): 794–821 CrossRefGoogle Scholar
  13. 13.
    Girault V. and Raviart P.A. (1986). Finite Element Methods for Navier–Stokes Equations. Springer, Heidelberg zbMATHGoogle Scholar
  14. 14.
    Gresho P.M. (1990). On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part I: Theory. Int. J. Numer. Methods Fluids 11: 587–620 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Guermond J.L. (1994). Remarques sur les méthodes de projection pour l’approximation des équations de Navier–Stokes. Numer. Math. 67: 465–473 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Guermond J.L. and Quartapelle L. (1998). On stability and convergence of projection methods based on pressure Poisson equation. Int. J. Numer. Methods Fluids 26: 1039–1053 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Guermond J.L. and Quartapelle L. (1998). On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80: 207–238 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Heywood J.G. and Rannacher R. (1982). Finite element approximation of the nonstationary Navier–Stokes problem. I: Regularity of solutions and second-order error estimates for spatial disetization. SIAM J. Numer. Anal. 19: 275–311 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Heywood J.G. and Rannacher R. (1990). Finite element approximation of the nonstationary Navier–Stokes problem. IV: Error analysis for second-order time disetization. SIAM J. Numer. Anal. 27: 353–384 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ladyzhenskaya O. (1969). The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York zbMATHGoogle Scholar
  21. 21.
    Perot J.B. (1993). An analysis of the fractional step method. J. Comput. Phys. 108: 51–58 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Prohl, A.: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier–Stokes Equations. B.G. Teubner Stuttgart (1997)Google Scholar
  23. 23.
    Rannacher, R.: On Chorin’s Projection Method for Incompressible Navier–Stokes Equations, Lecture Notes in Mathematics, vol. 1530, pp. 167–183. Springer, Berlin (1992)Google Scholar
  24. 24.
    Shen J. (1992). On error estimates for some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62: 49–73 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Shen J. (1994). Remarks on the pressure error estimates for the projection methods. Numer. Math. 67: 513–520 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Temam R. (1969). Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionaires (I). Arch. Ration. Mech. Anal. 32: 135–153 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Temam R. (1969). Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionaires (II). Arch. Ration. Mech. Anal. 33: 377–385 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Temam R. (1984). Navier–Stokes Equations. North-Holland, Amsterdam zbMATHGoogle Scholar
  29. 29.
    Temam R. (1991). Remark on the pressure boundary condition for the projection method. Theor. Comput. Fluid Dyn. 3: 181–184 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations