Advertisement

Numerische Mathematik

, Volume 107, Issue 3, pp 433–454 | Cite as

Second-order nonsmooth optimization for H synthesis

  • Vincent Bompart
  • Dominikus NollEmail author
  • Pierre Apkarian
Article

Abstract

The standard way to compute H feedback controllers uses algebraic Riccati equations and is therefore of limited applicability. Here we present a new approach to the H output feedback control design problem, which is based on nonlinear and nonsmooth mathematical programming techniques. Our approach avoids the use of Lyapunov variables, and is therefore flexible in many practical situations.

Keywords

Trust Region Secondary Peak Real Analytic Function Augmented Lagrangian Method Algebraic Riccati Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apkarian P. and Noll D. (2006). Controller design via nonsmooth multi-directional search. SIAM J. Control Optim. 44(6): 1923–1949 zbMATHCrossRefGoogle Scholar
  2. 2.
    Apkarian P. and Noll D. (2006). Nonsmooth H synthesis. IEEE Trans. Autom. Control 51(1): 71–86 CrossRefGoogle Scholar
  3. 3.
    Apkarian P. and Noll D. (2006). Nonsmooth optimization for multidisk H synthesis. Eur. J. Control 12(3): 229–244 CrossRefGoogle Scholar
  4. 4.
    Apkarian P. and Noll D. (2007). Nonsmooth optimization for multiband frequency domain control design. Automatica 43(4): 724–731 zbMATHCrossRefGoogle Scholar
  5. 5.
    Apkarian P., Noll D., Thevenet J.-B. and Tuan H.D. (2004). A spectral quadratic SDP method with applications to fixed-order H 2 and H synthesis. Eur. J. Control 10(6): 527–538 CrossRefGoogle Scholar
  6. 6.
    Apkarian P. and Tuan H.D. (2000). Robust control via concave minimization—local and global algorithms. IEEE Trans. Autom. Control 45(2): 299–305 zbMATHCrossRefGoogle Scholar
  7. 7.
    Balakrishnan V., Boyd S. and Balemi S. (1991). Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems. Int. J. Robust Nonlinear Control 1(4): 295–317 zbMATHCrossRefGoogle Scholar
  8. 8.
    Bompart, V., Apkarian, P., Noll, D.: Nonsmooth techniques for stabilizing linear systems. In: Proceedings of the American Control Conference, New York (2007)Google Scholar
  9. 9.
    Boyd S. and Balakrishnan V. (1990). A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L -norm. Syst. Control Lett. 15(1): 1–7 zbMATHCrossRefGoogle Scholar
  10. 10.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. In: SIAM Studies in Applied Mathematics, vol 15. SIAM, Philadelphia (1994)Google Scholar
  11. 11.
    Bruinsma N.A. and Steinbuch M. (1990). A fast algorithm to compute the H -norm of a transfer function matrix. Syst. Control Lett. 14(5): 287–293 zbMATHCrossRefGoogle Scholar
  12. 12.
    Conn, A., Gould, N., Toint, Ph.: Trust-region methods. In: MPS-SIAM Series on Optimization, Philadelphia (2000)Google Scholar
  13. 13.
    Fares B., Apkarian P. and Noll D. (2001). An augmented Lagrangian method for a class of LMI-constrained problems in robust control. Int. J. Control 74(4): 348–360 zbMATHCrossRefGoogle Scholar
  14. 14.
    Fares B., Noll D. and Apkarian P. (2002). Robust control via sequential semidefinite programming. SIAM J. Control Optim. 40(6): 1791–1820 zbMATHCrossRefGoogle Scholar
  15. 15.
    Fletcher R. (1985). Semi-definite matrix constraints in optimization. SIAM J. Control Optim. 23(4): 493–513 zbMATHCrossRefGoogle Scholar
  16. 16.
    Gahinet, P., Apkarian, P.: Numerical computation of the L -norm revisited. In: Proceedings of the IEEE Conference on Decision and Control, Tucson, pp 2257–2258 (1992)Google Scholar
  17. 17.
    Golub G. and Van Loan C. (1989). Matrix Computations. Johns Hopkins University Press, Baltimore, London zbMATHGoogle Scholar
  18. 18.
    Hettich R. and Kortanek K. (1993). Semi-infinite programming: theory, methods and applications. SIAM Rev. 35(3): 380–429 zbMATHCrossRefGoogle Scholar
  19. 19.
    Jarre F. (1993). An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices. SIAM J. Control Optim. 31(5): 1360–1377 zbMATHCrossRefGoogle Scholar
  20. 20.
    Jongen H.Th., Meer K. and Triesch E. (2004). Optimization Theory. Kluwer, Dordrecht zbMATHGoogle Scholar
  21. 21.
    Kato T. (1980). Perturbation theory for linear operators. Springer, New York zbMATHGoogle Scholar
  22. 22.
    Laub A. (1981) Efficient multivariable frequency response computations. IEEE Trans. Autom. Control 26(2), 407–408CrossRefGoogle Scholar
  23. 23.
    Leibfritz, F.: COMPleib: COnstrained Matrix-optimization Problem ph library—a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Technical report, Universität Trier (2003)Google Scholar
  24. 24.
    Leibfritz F. and Mostafa E.M.E. (2002). An interior-point constrained trust region method for a special class of nonlinear semi-definite programming problems. SIAM J. Optim. 12(4): 1048–1074 zbMATHCrossRefGoogle Scholar
  25. 25.
    Leibfritz F. and Mostafa E.M.E. (2003). Trust region methods for solving the optimal output feedback design problem. Int. J. Control 76(5): 501–519 zbMATHCrossRefGoogle Scholar
  26. 26.
    MacFarlane A.G.J. and Hung Y.S. (1983). Analytic properties of the singular value of a rational matrix. Int. J. Control 37(2): 221–234 zbMATHGoogle Scholar
  27. 27.
    Mayne D.Q. and Polak E. (1975). Algorithms for the design of control systems subject to singular value inequalities. IEEE Trans. Autom. Control AC-20(4): 546–548 Google Scholar
  28. 28.
    Nocedal J. and Wright S. (1999). Numerical Optimization. Springer, New York zbMATHGoogle Scholar
  29. 29.
    Noll D. and Apkarian P. (2005). Spectral bundle methods for nonconvex maximum eigenvalue functions: second-order methods. Math. Program. Ser. B 104(2): 729–747 zbMATHCrossRefGoogle Scholar
  30. 30.
    Noll D., Torki M. and Apkarian P. (2004). Partially augmented Lagrangian method for matrix inequality constraints. SIAM J. Optim. 15(1): 161–184 zbMATHCrossRefGoogle Scholar
  31. 31.
    Overton M.L. (1983). A quadratically convergent method for minimizing a sum of Euclidean norms. Math. Program. 27: 34–63 zbMATHCrossRefGoogle Scholar
  32. 32.
    Overton M.L. (1988). On minimizing the maximum eigenvalue of a symmetric matrix. SIAM J. Matrix Anal. Appl. 9(2): 256–268 zbMATHCrossRefGoogle Scholar
  33. 33.
    Polak E. and Wardi Y. (1982). A nondifferentiable optimization algorithm for the design of control systems subject to singular value inequalities over a frequency range. Automatica 18(3): 267–283 zbMATHCrossRefGoogle Scholar
  34. 34.
    Safonov, M.G., Goh, K.C., Ly, J.H.: Control system synthesis via bilinear matrix inequalities. In: Proceedings of the American Control Conference, pp 45–49 (1994)Google Scholar
  35. 35.
    Shapiro A. (1997). First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(2): 301–320 Google Scholar
  36. 36.
    Thevenet J.-B., Noll D. and Apkarian P. (2006). Nonlinear spectral SDP method for BMI-constrained problems: applications to control design. In: Braz, J., Araújo, H., Vieira, A., and Encarnação, B. (eds) Informatics in Control, Automation and Robotics I., pp 61–72. Springer, Heidelberg CrossRefGoogle Scholar
  37. 37.
    Tuan H.D., Apkarian P. and Nakashima Y. (2000). A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities. Int. J. Robust Nonlinear Control 10(7): 561–578 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Vincent Bompart
    • 1
    • 2
  • Dominikus Noll
    • 1
    Email author
  • Pierre Apkarian
    • 1
    • 2
  1. 1.Institut de MathématiquesUniversité Paul SabatierToulouseFrance
  2. 2.ONERA-CERTToulouseFrance

Personalised recommendations