Numerische Mathematik

, Volume 107, Issue 2, pp 315–331

Barycentric rational interpolation with no poles and high rates of approximation



It is well known that rational interpolation sometimes gives better approximations than polynomial interpolation, especially for large sequences of points, but it is difficult to control the occurrence of poles. In this paper we propose and study a family of barycentric rational interpolants that have no real poles and arbitrarily high approximation orders on any real interval, regardless of the distribution of the points. These interpolants depend linearly on the data and include a construction of Berrut as a special case.

Mathematics Subject Classification (2000)

65D05 41A05 41A20 41A25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baltensperger R., Berrut J.-P., Noël B. (1999). Exponential convergence of a linear rational interpolant between transformed Chebychev points. Math.Comput. 68(227): 1109–1120 MATHCrossRefGoogle Scholar
  2. 2.
    Barry P.J., Goldman R.N. (1988). A recursive evaluation algorithm for a class of Catmull-Rom splines. ACM SIGGRAPH Comput. Graph. 22(4): 199–204 CrossRefGoogle Scholar
  3. 3.
    Berrut J.-P. (1988). Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15(1): 1–16 MATHCrossRefGoogle Scholar
  4. 4.
    Berrut, J.-P., Baltensperger, R., Mittelmann, H.D.: Recent developments in barycentric rational interpolation. In: de Bruin, M.G., Mache, D.H., Szabados, J., (eds) Trends and Applications in Constructive Approximation. International Series of Numerical Mathematics, vol. 151, pp 27–51. Birkhäuser, Basel (2005)Google Scholar
  5. 5.
    Berrut J.-P., Mittelmann H.D. (1997). Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval. Comput. Math. Appl. 33(6): 77–86 MATHCrossRefGoogle Scholar
  6. 6.
    Berrut J.-P., Trefethen L.N. (2004). Barycentric Lagrange interpolation. SIAM Rev. 46(3): 501–517 MATHCrossRefGoogle Scholar
  7. 7.
    Catmull, E., Rom, R.: A class of local interpolating splines. In: Barnhill R.E., Riesenfeld R.F. (eds) Computer Aided Geometric Design, pp. 317–326. Academic, New York (1974)Google Scholar
  8. 8.
    Davis P.J., Rabinowitz P. (1984). Methods of numerical integration, 2nd edn. Computer Science and Applied Mathematics. Academic, Orlando Google Scholar
  9. 9.
    de Boor, C.: A practical guide to splines, revised edn. Applied Mathematical Sciences, vol. 27. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Dupuy M. (1948). Le calcul numérique des fonctions par l’interpolation barycentrique. Comptes Rendus de l’Académie des Sciences. Série I, Mathématique 226: 158–159 MATHGoogle Scholar
  11. 11.
    Franke R. (1982). Scattered data interpolation: test of some methods. Math. Comput. 38(157): 181–200 MATHCrossRefGoogle Scholar
  12. 12.
    Franke R., Nielson G. (1980). Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15(11): 1691–1704 MATHCrossRefGoogle Scholar
  13. 13.
    Gordon W.J., Wixom J.A. (1978). Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation. Math. Comput. 32(141): 253–264 MATHCrossRefGoogle Scholar
  14. 14.
    Higham N.J. (2004). The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24(4): 547–556 MATHCrossRefGoogle Scholar
  15. 15.
    Hormann K., Floater M.S. (2006). Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25(4): 1424–1441 CrossRefGoogle Scholar
  16. 16.
    Isaacson E., Keller H.B. (1994). Analysis of numerical methods. Dover, New York Google Scholar
  17. 17.
    Lancaster P., Salkauskas K. (1981). Surfaces generated by moving least squares methods. Math. Comput. 37(155): 141–158 MATHCrossRefGoogle Scholar
  18. 18.
    Levin D. (1998). The approximation power of moving least-squares. Math. Comput. 67(224): 1517–1531 MATHCrossRefGoogle Scholar
  19. 19.
    Ruprecht, D., Müller, H.: Free form deformation with scattered data interpolation methods. In: Farin G., Hagen H., Noltemeier H., Knödel W. (eds.) Geometric Modelling. Computing Supplementum, vol. 8, pp. 267–281. Springer, Heidelberg (1993)Google Scholar
  20. 20.
    Schneider C., Werner W. (1986). Some new aspects of rational interpolation. Math. Comput. 47(175): 285–299 MATHCrossRefGoogle Scholar
  21. 21.
    Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 23rd ACM national conference, pp. 517–524. ACM Press, (1968)Google Scholar
  22. 22.
    Taylor W.J. (1945). Method of Lagrangian curvilinear interpolation. J. Res. Nat. Bureau Stand. 35: 151–155 MATHGoogle Scholar
  23. 23.
    Tee T.W., Trefethen L.N. (2006). A rational spectral collocation method with adaptively transformed Chebyshev grid points. SIAM J. Sci. Comput. 28(5): 1798–1811 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Centre of Mathematics for Applications, Department of InformaticsUniversity of OsloBlindernNorway
  2. 2.Department of InformaticsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations