Numerische Mathematik

, Volume 107, Issue 1, pp 147–174 | Cite as

On sensitivity of Gauss–Christoffel quadrature

  • Dianne P. O’LearyEmail author
  • Zdeněk Strakoš
  • Petr Tichý


In numerical computations the question how much does a function change under perturbations of its arguments is of central importance. In this work, we investigate sensitivity of Gauss–Christoffel quadrature with respect to small perturbations of the distribution function. In numerical quadrature, a definite integral is approximated by a finite sum of functional values evaluated at given quadrature nodes and multiplied by given weights. Consider a sufficiently smooth integrated function uncorrelated with the perturbation of the distribution function. Then it seems natural that given the same number of function evaluations, the difference between the quadrature approximations is of the same order as the difference between the (original and perturbed) approximated integrals. That is perhaps one of the reasons why, to our knowledge, the sensitivity question has not been formulated and addressed in the literature, though several other sensitivity problems, motivated, in particular, by computation of the quadrature nodes and weights from moments, have been thoroughly studied by many authors. We survey existing particular results and show that even a small perturbation of a distribution function can cause large differences in Gauss–Christoffel quadrature estimates. We then discuss conditions under which the Gauss–Christoffel quadrature is insensitive under perturbation of the distribution function, present illustrative examples, and relate our observations to known conjectures on some sensitivity problems.


Jacobi Matrix Orthogonal Polynomial Conjugate Gradient Method Quadrature Formula Jacobi Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckermann B., Bourreau E. (1998). How to choose modified moments?. J. Comput. Appl. Math. 98(1): 81–98 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boley D., Golub G.H. (1987). A survey of matrix inverse eigenvalue problems. Inverse Probl 3(41): 595–622 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de Boor C., Golub G.H. (1978). The numerically stable reconstruction of a Jacobi matrix from spectral data. Linear Algebra Appl. 21(3): 245–260 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carpraux J.F., Godunov S.K., Kuznetsov S.V. (1996). Condition number of the Krylov bases and subspaces. Linear Algebra Appl. 248: 137–160 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dahlquist, G., Golub, G.H., Nash, S.G.: Bounds for the error in linear systems. In: Semi-infinite programming (Proc. Workshop, Bad Honnef, 1978). Lecture Notes in Control and Information Sci., vol. 15, pp. 154–172. Springer, Berlin (1979)Google Scholar
  6. 6.
    Davis, P.J., Rabinowitz, P.: Methods of numerical integration, 2nd edn. Computer Science and Applied Mathematics. Academic, Orlando (1984)Google Scholar
  7. 7.
    Demmel J., Kahan W. (1990). Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Comput. 11(5): 873–912 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dhillon, I.S.: A new O(n 2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem. PhD Thesis, University of California, Berkeley (1997)Google Scholar
  9. 9.
    Dhillon I.S., Parlett B.N. (2003). Orthogonal eigenvectors and relative gaps. SIAM J. Matrix Anal. Appl. (electronic) 25(3): 858–899 CrossRefMathSciNetGoogle Scholar
  10. 10.
    Dhillon I.S., Parlett B.N. (2004). Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387: 1–28 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Druskin V., Borcea L., Knizhnerman L. (2005). On the sensitivity of Lanczos recursions to the spectrum. Linear Algebra Appl. 396: 103–125 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Elhay S., Golub G.H., Kautsky J. (1991). Updating and downdating of orthogonal polynomials with data fitting applications. SIAM J. Matrix Anal. Appl. 12(2): 327–353 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Elhay S., Golub G.H., Kautsky J. (1992). Jacobi matrices for sums of weight functions. BIT 32(1): 143–166 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fischer H.J. (1998). On generating orthogonal polynomials for discrete measures. Z. Anal. Anwendungen 17(1): 183–205 zbMATHMathSciNetGoogle Scholar
  15. 15.
    Gautschi W. (1968). Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22: 251–270 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gautschi W. (1970). On the construction of Gaussian quadrature rules from modified moments. Math. Comp. 24: 245–260 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gautschi, W.: Questions on numerical condition related to polynomials. In: Recent Advances in Numerical Analysis (Madison, 1978), pp. 45–72. Academic, New York (1978)Google Scholar
  18. 18.
    Gautschi, W.: A survey of Gauss–Christoffel quadrature formulae. In: Butzer, P.L., Fehér, F. (eds.) E.B. Christoffel: The Influence of His Work on Mathematics and Physics, pp. 72–147. Birkhäuser, Basel (1981)Google Scholar
  19. 19.
    Gautschi W. (1982). On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput. 3(3): 289–317 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Gautschi W. (1993). Is the recurrence relation for orthogonal polynomials always stable?. BIT 33(2): 277–284 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Gautschi, W.: Numerical analysis: an introduction. Birkhäuser Boston Inc., Boston (1997)Google Scholar
  22. 22.
    Gautschi W. (2002). The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub. Electron. Trans. Numer. Anal. (electronic) 13: 119–147 zbMATHMathSciNetGoogle Scholar
  23. 23.
    Gautschi W. (2004). Orthogonal polynomials: computation and approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York Google Scholar
  24. 24.
    Gautschi W. (2005). Orthogonal polynomials (in Matlab). J. Comput. Appl. Math. 178(1–2): 215–234 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Gautschi W., Varga R.S. (1983). Error bounds for Gaussian quadrature of analytic functions. SIAM J. Numer. Anal. 20(6): 1170–1186 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Golub, G.H.: Matrix computation and the theory of moments. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 1440–1448. Birkhäuser, Basel (1995)Google Scholar
  27. 27.
    Golub, G.H., Van Loan, C.F.: Matrix computations, Johns Hopkins Series in the Mathematical Sciences, vol. 3, 2nd edn. Johns Hopkins University Press, Baltimore (1989)Google Scholar
  28. 28.
    Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comp. 23 (1969), 221-230; addendum, ibid. 23(106, loose microfiche suppl), A1–A10 (1969)Google Scholar
  29. 29.
    Gragg W.B., Harrod W.J. (1984). The numerically stable reconstruction of Jacobi matrices from spectral data. Numer. Math. 44(3): 317–335 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Grosser B., Lang B. (2005). On symmetric eigenproblems induced by the bidiagonal SVD. SIAM J. Matrix Anal. Appl. (electronic) 26(3): 599–620 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Hestenes M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49, 409–436 (1953) (1952)Google Scholar
  32. 32.
    Isaacson E., Keller H.B. (1966). Analysis of numerical methods. Wiley, New York zbMATHGoogle Scholar
  33. 33.
    Kautský J., Golub G.H. (1983). On the calculation of Jacobi matrices. Linear Algebra Appl. 52/53: 439–455 Google Scholar
  34. 34.
    Kuznetsov S.V. (1997). Perturbation bounds of the Krylov bases and associated Hessenberg forms. Linear Algebra Appl. 265: 1–28 zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Lanczos, C.: Applied analysis. Prentice Hall, Inc., Englewood Cliffs (1956)Google Scholar
  36. 36.
    Laurie D.P. (1999). Accurate recovery of recursion coefficients from Gaussian quadrature formulas. J. Comput. Appl. Math. 112(1–2): 165–180 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Laurie, D.P.: Questions related to Gaussian quadrature formulas and two-term recursions. In: Applications and computation of orthogonal polynomials (Oberwolfach, 1998). Int. Ser. Numer. Math. 131, 133–144 (1999)Google Scholar
  38. 38.
    Laurie D.P. (2001). Computation of Gauss-type quadrature formulas. J. Comput. Appl. Math. 127(1–2): 201–217 zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Li R.C. (1997). Relative perturbation theory. III. More bounds on eigenvalue variation. Linear Algebra Appl. 266: 337–345 zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Meurant G., Strakoš Z. (2006). Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15: 471–542 zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Milne-Thomson L.M. (1960). The Calculus of Finite Differences. MacMillan & Co., New York Google Scholar
  42. 42.
    Natterer, F.: Discrete Gel’fand–Levitan theory, www page of the author (1999)Google Scholar
  43. 43.
    Nevai P.G. (1979). Orthogonal polynomials. Mem. Am. Math. Soc. 18(213): v+185 MathSciNetGoogle Scholar
  44. 44.
    O’Leary D.P., Stewart G.W., Vandergraft J.S. (1979). Estimating the largest eigenvalue of a positive definite matrix. Math. Comp. 33(148): 1289–1292 zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Paige, C.C., Van Dooren, P.: Sensitivity analysis of the Lanczos reduction. Numer. Linear Algebra Appl. 6(1), 29–50 (1999). Czech-US Workshop in Iterative Methods and Parallel Computing, Part I (Milovy, 1997)Google Scholar
  46. 46.
    Parlett, B.N., Dhillon, I.S.: Relatively robust representations of symmetric tridiagonals. In: Proceedings of the International Workshop on Accurate Solution of Eigenvalue Problems (University Park, PA, 1998), vol. 309, pp. 121–151 (2000)Google Scholar
  47. 47.
    Parlett B.N., Simon H., Stringer G. (1982). On estimating the largest eigenvalue with the Lanczos algorithm. Math. Comp. 38: 153–165 zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Reichel L. (1991). Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation. SIAM J. Matrix Anal. Appl. 12(3): 552–564 zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    van der Sluis A., van der Vorst H. (1986). The rate of convergence of conjugate gradients. Numer. Math. 48: 543–560 zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    van der Sluis A., van der Vorst H. (1987). The convergence behavior of Ritz values in the presence of close eigenvalues. Linear Algebra Appl. 88: 651–694 CrossRefMathSciNetGoogle Scholar
  51. 51.
    Strakoš Z. (1991). On the real convergence rate of the conjugate gradient method. Linear Algebra Appl. 154–156: 535–549 CrossRefGoogle Scholar
  52. 52.
    Strakoš Z., Tichý P. (2002). On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. (electronic) 13: 56–80 zbMATHGoogle Scholar
  53. 53.
    Stroud, A.H., Secrest, D.: Gaussian quadrature formulas. Prentice-Hall Inc., Englewood Cliffs (1966)Google Scholar
  54. 54.
    Swarztrauber P.N. (2002). On computing the points and weights for Gauss-Legendre quadrature. SIAM J. Sci. Comput. (electronic) 24(3): 945–954 zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Szegö G. (1939). Orthogonal Polynomials. Colloquium Publications, vol. XXIII. American Mathematical Society, New York Google Scholar
  56. 56.
    Uvarov V.B. (1969). The connection between systems of polynomials that are orthogonal with respect to different distribution functions. ŽVyčisl. Mat. i Mat. Fiz. 9: 1253–1262 zbMATHMathSciNetGoogle Scholar
  57. 57.
    Vorobyev, Y.V.: Methods of moments in applied mathematics. Translated from the Russian by Bernard Seckler. Gordon and Breach Science Publishers, New York (1965)Google Scholar
  58. 58.
    Willems P., Lang B., Vömel C. (2006). Computing the bidiagonal SVD using multiple relatively robust representations. SIAM J. Matrix Anal. Appl. 28(4): 907–926 CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Xu S.F. (1993). A stability analysis of the Jacobi matrix inverse eigenvalue problem. BIT 33(4): 695–702 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Dianne P. O’Leary
    • 1
    Email author
  • Zdeněk Strakoš
    • 2
  • Petr Tichý
    • 3
  1. 1.Department of Computer Science and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA
  2. 2.Institute of Computer Science and Faculty of Mathematics and PhysicsAcademy of Sciences of the Czech Republic and Charles UniversityPragueCzech Republic
  3. 3.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations