Numerische Mathematik

, Volume 103, Issue 3, pp 435–459 | Cite as

Auxiliary space preconditioning in H 0(curl; Ω)

  • R. HiptmairEmail author
  • G. Widmer
  • J. Zou


We adapt the principle of auxiliary space preconditioning as presented in [J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, Computing, 56 (1996), pp. 215–235.] to H (curl; ω)-elliptic variational problems discretized by means of edge elements. The focus is on theoretical analysis within the abstract framework of subspace correction. Employing a Helmholtz-type splitting of edge element vector fields we can establish asymptotic h-uniform optimality of the preconditioner defined by our auxiliary space method.

Mathematics Subject Classifications

65N22 65F10 65N30 65N55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, D., Falk, R., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85, 175–195 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bochev, P., Garasi, C., Hu, J., Robinson, A., Tuminaro, R.: An improved algebraic multigrid method for solving Maxwell's equations. SIAM J. Sci. Comp. 25, 623–642 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bornemann F., A sharpedned condition number estimate for the BPX-preconditioner of elliptic finite element problems on highly non-uniform triangulations, Tech. Report SC 91-9, ZIB, Berlin, Germany, September 1991Google Scholar
  4. 4.
    Bossavit, A.: Two dual formulations of the 3D eddy–currents problem. COMPEL, 4, 103–116 (1985)MathSciNetGoogle Scholar
  5. 5.
    Chan, T., Zou, J.: A convergence theory of multilevel additive schwarz methods on unstructured meshes. Numerical Algorithms, 13, 365–398 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chan, T.F., Smith, B.F., Zou, J.: Overlapping schwarz methods on unstructured meshes using non-matching coarse grids. Numer. Math. 73, 149–167 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Girault, V., Raviart, P.: Finite element methods for Navier–Stokes equations. Springer, Berlin, 1986Google Scholar
  8. 8.
    Gopalakrishnan, J., Pasciak, J.: Overlapping schwarz preconditioners for indefinite time harmonic Maxwell equations. Math. Comp. 72, 1–15 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gopalakrishnan, J., Pasciak, J., Demkowicz, L.: Analysis of a multigrid algorithm for time harmonic Maxwell equations. SIAM J. Numer. Anal. 42, 90–108 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative schwarz algorithms. Numer. Math. 70, 163–180 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hanselman, D., Littlefield, B.: Mastering MATLAB 6. Prentice Hall, Upper Saddle River, NJ, 2001Google Scholar
  12. 12.
    Hiptmair, R.: Multigrid method for Maxwell's equations. SIAM J. Numer. Anal. 36, 204–225 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hiptmair, R.: Discrete Hodge operators. Numer. Math. 90, 265–289 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica, 11, 237–339 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hiptmair, R.: Analysis of multilevel methods for eddy current problems. Math. Comp. 72, 1281–1303 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Hiptmair, R., Toselli, A.: Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions. In: Parallel Solution of Partial Differential Equations, Bjorstad P. and M. Luskin, eds. no. 120 in IMA Volumes in Mathematics and its Applications, Springer, Berlin, (1999), pp. 181–202.Google Scholar
  17. 17.
    Hu, Q., Zou, J.: A non-overlapping domain decomposition method for Maxwell's equation in three dimensions. SIAM J. Numer. Anal. 41, 1682–1708 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hu, Q., Zou, J.: Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions. Math. Comp. 73, 35–61 (2003)CrossRefGoogle Scholar
  19. 19.
    Nédélec, J.: Mixed finite elements in ℝ3. Numer. Math. 35, 315–341 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Nédélec, J.: A new family of mixed finite elements in R 3. Numer. Math. 50, 57–81 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Pasciak, J., Zhao, J.: Overlapping Schwarz methods in H(curl) on polyhedral domains. J. Numer. Math. 10, 221–234 (2002)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Reitzinger, S., Schöberl, J.: Algebraic multigrid for edge elements. Numerical Linear Algebra with Applications, 9, 223–238 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Ruge, J., Stüben, K.: Algebraic multigrid. In: McCormick, S. (ed.), Multigrid methods, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1987, ch. 4, pp. 73–130Google Scholar
  24. 24.
    Scott, L.R., Zhang, Z..: Finite element interpolation of nonsmooth functions satisfying boundary conditions Math. Comp. 54, 483–493 (1990)zbMATHGoogle Scholar
  25. 25.
    Sterz, O.: Multigrid for time-harmonic eddy currents without gauge. Preprint 2003-07, IWR Heidelberg, Heidelberg, Germany, April 2003Google Scholar
  26. 26.
    Stüben, K.: An introduction to algebraic multigrid. Academic Press, London, ch. Appendix A, 2001, pp. 413–528Google Scholar
  27. 27.
    Toselli, A.: Overlapping Schwarz methods for Maxwell's equations in three dimensions. Numer. Math. 86, 733–752 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Review, 34, 581–613 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing, 56, 215–235 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Xu, J.: An introduction to multilevel methods. In: M. Ainsworth, K. Levesley, M. Marletta, W. Light (eds.), Wavelets, Multilevel Methods and Elliptic PDEs, Numerical Mathematics and Scientific Computation, Oxford: Clarendon Press, 1997, pp. 213–301Google Scholar
  31. 31.
    Xu, J., Zou, J.: Some non-overlapping domain decomposition methods. SIAM Review, 40, 857–914 (1998)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.SAM ETZ ZürichZürich
  2. 2.Department of MathematicsThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations