Numerische Mathematik

, Volume 106, Issue 1, pp 1–40

# Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing

Article

## Abstract

In this paper we present an analysis of a numerical method for a degenerate partial differential equation, called the Black–Scholes equation, governing American and European option pricing. The method is based on a fitted finite volume spatial discretization and an implicit time stepping technique. The analysis is performed within the framework of the vertical method of lines, where the spatial discretization is formulated as a Petrov–Galerkin finite element method with each basis function of the trial space being determined by a set of two-point boundary value problems. We establish the stability and an error bound for the solutions of the fully discretized system. Numerical results are presented to validate the theoretical results.

### Mathematics Subject Classification (2000)

65 M 60 65 K 10 90 C 33

## Preview

### References

1. 1.
Achdou Y. (2005). An inverse problem for a parabolic variational inequality arising in volatility calibration with American options. SIAM J. Control Optim. 43(5): 1583–1615
2. 2.
Allegretto W., Lin Y. and Yang H. (2001). Finite element error estimates for a nonlocal problem in American option valuation. SIAM J. Numer. Anal. 39(3): 834–857 (electronic)
3. 3.
Angermann L. (1995). Error estimates for the finite-element solution of an elliptic singularly perturbed problem. IMA J. Num. Anal. 15: 161–196
4. 4.
Angermann L. and Wang S. (2003). Three-dimensional exponentially fitted conforming tetrahedral finite elements for the semiconductor continuity equations. Appl. Numer. Math. 46: 19–43
5. 5.
Barles G. (1997). Convergence of numerical schemes for degenerate parabolic equations arising in finance theory. In: Rogers, L.C.G. and Taley, D. (eds) Numerical Methods in Finance, pp 1–21. Cambridge University Press, Cambridge Google Scholar
6. 6.
Barles G., Daher Ch. and Romano M. (1995). Convergence of numerical schemes for problems arising in finance theory. Math. Models Methods Appl. Sci. 5: 125–143
7. 7.
Bensoussan, A., Lions, J.-L.: Applications of variational inequalities in stochastic control. In: Studies in Mathematics and its Applications. vol. 12, North-Holland Publishing Co., Amsterdam (1982) Translated from the FrenchGoogle Scholar
8. 8.
Benth F.E., Karlsen K.H. and Reikvam K. (2004). A semilinear Black and Scholes partial differential equation for valuing American options: approximate solutions and convergence. Interfaces Free Bound. 6(4): 379–404
9. 9.
Black F. and Scholes M. (1973). The pricing of options and corporate liabilities. J. Polit. Econ. 81: 637–659
10. 10.
Courtadon G. (1882). A more accurate finite difference approximation for the valuation of options. J. Financ. Econ. Quant. Anal. 17: 697–703
11. 11.
Cox J.C., Ross S. and Rubinstein M. (1979). Option pricing: a simplified approach. J. Financ. Econ. 7: 229–264
12. 12.
Forsyth P.A. and Vetzal K.R. (2002). Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23(6): 2095–2122 (electronic)
13. 13.
Glowinski R. (1984). Numerical Methods for Nonlinear Variational Problems. Springer, Berlin Heidelberg New York
14. 14.
Han H. and Wu X. (2003). A fast numerical method for the Black–Scholes equation of American options. SIAM J. Numer. Anal. 41(6): 2081–2095
15. 15.
Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite element method for hemivariational inequalities. In: Nonconvex Optimization and its Applications, vol. 35, Kluwer, Dordrecht (1999)Google Scholar
16. 16.
Holtz, M., Kunoth, A.: B-spline-based monotone multigrid methods (2004) (Submitted)Google Scholar
17. 17.
Hull J.C. and White A. (1988). The use of control variate technique in option pricing. J. Financ. Econ. Quant. Anal. 23: 237–251
18. 18.
Hull J.C. and White A. (1996). Hull-White on Derivatives. Risk Publications, London
19. 19.
Jaillet P., Lamberton D. and Lapeyre B. (1990). Variational inequalities and the pricing of American options. Acta Appl. Math. 21(3): 263–289
20. 20.
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic New York, (1980)Google Scholar
21. 21.
Kufner A. (1985). Weighted Sobolev spaces. Wiley, New York Translated from the Czech
22. 22.
Miller J.J.H. and Wang S. (1994). A new non-conforming Petrov-Galerkin method with triangular elements for a singularly perturbed advection-diffusion problem. IMA J. Numer. Anal. 14: 257–276
23. 23.
Miller J.J.H. and Wang S. (1994). An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems. J. Comput. Phys. 115: 56–64
24. 24.
Oosterlee, C.W.: On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal. 15, 165–185 (electronic) (2003). In: 10th Copper mountain conference on multigrid methods (Copper Mountain, CO, 2001)Google Scholar
25. 25.
Ortega J.M. and Rheinboldt W.C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York
26. 26.
Rogers L.C.G. and Tallay D. (1997). Numerical Methods in Finance. Cambridge University Press, Cambridge
27. 27.
Schwartz E. (1977). The valuation of warrants: implementing a new approach. J. Financ. Econ. 13: 79–93
28. 28.
Vázquez C. (1998). An upwind numerical approach for an American and European option pricing model. Appl. Math. Comput. 97(2–3): 273–286
29. 29.
Wang S. (2004). A novel fitted finite volume method for the Black–Scholes equation governing option pricing. IMA J. Numer. Anal. 24: 699–720
30. 30.
Wang S., Yang X.Q. and Teo K.L. (2006). A power penalty method for a linear complementarity problem arising from American option valuation. J. Optimz. Theory App. 129(2): 227–254
31. 31.
Wilmott P., Dewynne J. and Howison S. (1993). Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford Google Scholar
32. 32.
Zvan R., Forsyth P.A. and Vetzal K.R. (1998). Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2): 199–218