Numerische Mathematik

, Volume 106, Issue 1, pp 1–40

Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing

Article

Abstract

In this paper we present an analysis of a numerical method for a degenerate partial differential equation, called the Black–Scholes equation, governing American and European option pricing. The method is based on a fitted finite volume spatial discretization and an implicit time stepping technique. The analysis is performed within the framework of the vertical method of lines, where the spatial discretization is formulated as a Petrov–Galerkin finite element method with each basis function of the trial space being determined by a set of two-point boundary value problems. We establish the stability and an error bound for the solutions of the fully discretized system. Numerical results are presented to validate the theoretical results.

Mathematics Subject Classification (2000)

65 M 60 65 K 10 90 C 33 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achdou Y. (2005). An inverse problem for a parabolic variational inequality arising in volatility calibration with American options. SIAM J. Control Optim. 43(5): 1583–1615 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allegretto W., Lin Y. and Yang H. (2001). Finite element error estimates for a nonlocal problem in American option valuation. SIAM J. Numer. Anal. 39(3): 834–857 (electronic) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Angermann L. (1995). Error estimates for the finite-element solution of an elliptic singularly perturbed problem. IMA J. Num. Anal. 15: 161–196 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Angermann L. and Wang S. (2003). Three-dimensional exponentially fitted conforming tetrahedral finite elements for the semiconductor continuity equations. Appl. Numer. Math. 46: 19–43 MATHMathSciNetGoogle Scholar
  5. 5.
    Barles G. (1997). Convergence of numerical schemes for degenerate parabolic equations arising in finance theory. In: Rogers, L.C.G. and Taley, D. (eds) Numerical Methods in Finance, pp 1–21. Cambridge University Press, Cambridge Google Scholar
  6. 6.
    Barles G., Daher Ch. and Romano M. (1995). Convergence of numerical schemes for problems arising in finance theory. Math. Models Methods Appl. Sci. 5: 125–143 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bensoussan, A., Lions, J.-L.: Applications of variational inequalities in stochastic control. In: Studies in Mathematics and its Applications. vol. 12, North-Holland Publishing Co., Amsterdam (1982) Translated from the FrenchGoogle Scholar
  8. 8.
    Benth F.E., Karlsen K.H. and Reikvam K. (2004). A semilinear Black and Scholes partial differential equation for valuing American options: approximate solutions and convergence. Interfaces Free Bound. 6(4): 379–404 MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Black F. and Scholes M. (1973). The pricing of options and corporate liabilities. J. Polit. Econ. 81: 637–659 CrossRefGoogle Scholar
  10. 10.
    Courtadon G. (1882). A more accurate finite difference approximation for the valuation of options. J. Financ. Econ. Quant. Anal. 17: 697–703 CrossRefGoogle Scholar
  11. 11.
    Cox J.C., Ross S. and Rubinstein M. (1979). Option pricing: a simplified approach. J. Financ. Econ. 7: 229–264 CrossRefMATHGoogle Scholar
  12. 12.
    Forsyth P.A. and Vetzal K.R. (2002). Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23(6): 2095–2122 (electronic) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Glowinski R. (1984). Numerical Methods for Nonlinear Variational Problems. Springer, Berlin Heidelberg New York MATHGoogle Scholar
  14. 14.
    Han H. and Wu X. (2003). A fast numerical method for the Black–Scholes equation of American options. SIAM J. Numer. Anal. 41(6): 2081–2095 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite element method for hemivariational inequalities. In: Nonconvex Optimization and its Applications, vol. 35, Kluwer, Dordrecht (1999)Google Scholar
  16. 16.
    Holtz, M., Kunoth, A.: B-spline-based monotone multigrid methods (2004) (Submitted)Google Scholar
  17. 17.
    Hull J.C. and White A. (1988). The use of control variate technique in option pricing. J. Financ. Econ. Quant. Anal. 23: 237–251 CrossRefGoogle Scholar
  18. 18.
    Hull J.C. and White A. (1996). Hull-White on Derivatives. Risk Publications, London MATHGoogle Scholar
  19. 19.
    Jaillet P., Lamberton D. and Lapeyre B. (1990). Variational inequalities and the pricing of American options. Acta Appl. Math. 21(3): 263–289 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic New York, (1980)Google Scholar
  21. 21.
    Kufner A. (1985). Weighted Sobolev spaces. Wiley, New York Translated from the Czech MATHGoogle Scholar
  22. 22.
    Miller J.J.H. and Wang S. (1994). A new non-conforming Petrov-Galerkin method with triangular elements for a singularly perturbed advection-diffusion problem. IMA J. Numer. Anal. 14: 257–276 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Miller J.J.H. and Wang S. (1994). An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems. J. Comput. Phys. 115: 56–64 MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Oosterlee, C.W.: On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal. 15, 165–185 (electronic) (2003). In: 10th Copper mountain conference on multigrid methods (Copper Mountain, CO, 2001)Google Scholar
  25. 25.
    Ortega J.M. and Rheinboldt W.C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York MATHGoogle Scholar
  26. 26.
    Rogers L.C.G. and Tallay D. (1997). Numerical Methods in Finance. Cambridge University Press, Cambridge MATHGoogle Scholar
  27. 27.
    Schwartz E. (1977). The valuation of warrants: implementing a new approach. J. Financ. Econ. 13: 79–93 CrossRefGoogle Scholar
  28. 28.
    Vázquez C. (1998). An upwind numerical approach for an American and European option pricing model. Appl. Math. Comput. 97(2–3): 273–286 MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Wang S. (2004). A novel fitted finite volume method for the Black–Scholes equation governing option pricing. IMA J. Numer. Anal. 24: 699–720 CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wang S., Yang X.Q. and Teo K.L. (2006). A power penalty method for a linear complementarity problem arising from American option valuation. J. Optimz. Theory App. 129(2): 227–254 CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Wilmott P., Dewynne J. and Howison S. (1993). Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford Google Scholar
  32. 32.
    Zvan R., Forsyth P.A. and Vetzal K.R. (1998). Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2): 199–218 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität ClausthalClausthal-ZellerfeldGermany
  2. 2.School of Mathematics and StatisticsUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations