Advertisement

Numerische Mathematik

, Volume 105, Issue 3, pp 481–510 | Cite as

A second-order accurate numerical method for a fractional wave equation

  • William McLean
  • Kassem Mustapha
Article

Abstract

We study a generalized Crank–Nicolson scheme for the time discretization of a fractional wave equation, in combination with a space discretization by linear finite elements. The scheme uses a non-uniform grid in time to compensate for the singular behaviour of the exact solution at t = 0. With appropriate assumptions on the data and assuming that the spatial domain is convex or smooth, we show that the error is of order k 2 + h 2, where k and h are the parameters for the time and space meshes, respectively.

Mathematics Subject Classification (2000)

26A33 45J05 65M12 65M15 65M60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brunner H., Pedas A., Vainikko G. (2001) Piecewise polynomial collocation methods for Volterra integro-differential equations. SIAM J. Numer. Anal. 39, 957–982CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Chandler G.A., Graham I.G. (1988) Product integration-collocation methods for noncompact integral operator equations. Math. Comp. 50, 125–138CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Cuesta E., Lubich C., Palencia C. (2006) Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Fairweather G. (1994) Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J. Numer. Anal. 31, 444–460CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Fujita Y.: Integral equation that interpolates the heat equation and the wave equation, I, II. Osaka J. Math. 27, 309–321, 797–804 (1990)Google Scholar
  6. 6.
    Kiryakova V.S. (2000) Multiple (multiindex) Mittag–Leffler functions and relation to generalized fractional calculus. J. Comput. Appl. Math. 118, 241–259CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    López-Fernández M., Palencia C. (2004) On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl. Numer. Math. 51, 289–303CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    López-Fernández M., Palencia C. (2006) A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    López Marcos J.-C. (1990) A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27, 20–31CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Lubich Ch. (1986) Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Lubich C. (1988) Convolution quadrature and discretized operational calculus, I, II. Numer. Math. 53, 129–145, 413–425CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lubich C.H., Sloan I.H., Thomée V. (1996) Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    McLean W., Mustapha K.: A second-order accurate numerical method for a fractional wave equation. Preprint AMR05/37, School of Mathematics, The University of New South WalesGoogle Scholar
  14. 14.
    McLean W., Thomée V. (1993) Numerical solution of an evolution equation with a positive-type memory term. J. Austral. Math. Soc. Ser. B 35, 23–70MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    McLean W., Thomée V. (2004) Time discretization of an evolution equation via Laplace transform. IMA. J. Numer. Anal. 24, 439–463CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    McLean W., Thomée V., Wahlbin L.B. (1996) Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69, 49–69CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Metzler R., Klafter J. (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Reports 339, 1–77CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Mittag–Leffler G. (1904) Sur la représentation analytique d’une branche uniforme d’une fonction monogéne. Acta Math. 29, 101–181CrossRefMathSciNetGoogle Scholar
  19. 19.
    Pani A., Fairweather G. (2002) An H 1-Galerkin mixed finite element method for an evolution equation with a positive type memory term. SIAM J. Numer. Anal. 40: 1475–1490CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    te Riele H.J.J. (1982) Collocation methods for weakly singular second-kind Volterra integral equations with nonsmooth solution. IMA J. Numer. Anal. 2, 437–449MathSciNetMATHGoogle Scholar
  21. 21.
    Schneider W.R., Wyss W. (1989) Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Sanz-Serna M.J. (1988) A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25, 319–327CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Thomée V.: Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054. Springer, Berlin Heidelberg Newyork (1984)Google Scholar
  24. 24.
    Yan Y., Fairweather G. (1992) Orthogonal spline collocation methods for some partial integrodifferential equations. SIAM J. Numer. Anal. 29, 755–768CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsThe University of New South WalesSydneyAustralia
  2. 2.Department of Mathematical SciencesKFUPMDhahranSaudi Arabia

Personalised recommendations