Numerische Mathematik

, Volume 105, Issue 1, pp 159–191 | Cite as

Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations

  • Maxim A. Olshanskii
  • Jörg Peters
  • Arnold Reusken


We consider an abstract parameter dependent saddle-point problem and present a general framework for analyzing robust Schur complement preconditioners. The abstract analysis is applied to a generalized Stokes problem, which yields robustness of the Cahouet-Chabard preconditioner. Motivated by models for two-phase incompressible flows we consider a generalized Stokes interface problem. Application of the general theory results in a new Schur complement preconditioner for this class of problems. The robustness of this preconditioner with respect to several parameters is treated. Results of numerical experiments are given that illustrate robustness properties of the preconditioner.


Generalized Stokes equations Interface problem Two-phase flow Preconditioning Schur complement 

AMS Subject Classifications

65N15 65N22 65N30 65F10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benzi M., Golub G.H., Liesen J.: Numerical solution of saddle point problems. Acta Numer. 1–137 (2005)Google Scholar
  2. 2.
    Bercovier M., Pironneau O. (1979) Error estimates for finite element method solution of the Stokes problem in primitive variables. Numer. Math. 33, 211–224zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bergh J., Löfström J. (1976) Interpolation Spaces. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  4. 4.
    Brackbill J.U., Kothe D.B., Zemach C. (1992) A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bramble J.H., Pasciak J.E. (1997) Iterative techniques for time dependent Stokes problems. Comput. Math. Appl. 33, 13–30zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Brezzi F., Fortin M. (1991) Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  7. 7.
    Brezzi F., Falk R.S. (1991) Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28, 581–590zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cahouet J., Chabard J.P. (1988) Some fast 3D finite element solvers for the generalized Stokes problem. Int. J. Numer. Methods Fluids. 8, 869–895MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chang Y.C., Hou T.Y., Merriman B., Osher S. (1996) Eulerian capturing methods based on a level set formulation for incompressible fluid interfaces. J. Comput. Phys. 124, 449–464zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Elman H.C., Silvester D.J., Wathen A.J. (2002) Block preconditioners for the discrete incompressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids 40, 333–344zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Girault V., Raviart P.-A.(1986) Finite Element Methods for Navier–Stokes Equations. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Groß, S., Reichelt V., Reusken A.: A Finite Element Based Level Set Method for Two-Phase Incompressible Flows, IGPM Report Nr. 243, May 2004, RWTH Aachen. To appear in Comput. Visual. Sci.Google Scholar
  13. 13.
    Kobelkov G.M., Olshanskii M.A. (2000) Effective preconditioning of Uzawa type schemes for generalized Stokes problem. Numer. Math. 86, 443–470zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Loghin D., Wathen A.J. (2002) Schur complement preconditioners for the Navier–Stokes equations. Int. J. Numer. Meth. Fluids 40, 403–412zbMATHMathSciNetGoogle Scholar
  15. 15.
    Mardal K.-A., Winther R. (2004) Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 98, 305–327zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Mardal K.-A., Winther R. (2006) Erratum: Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 103, 171–172zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Olshanskii M.A., Reusken A. (2006) A Stokes interface problem. Numer. Math. 103, 129–149zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Olshanskii M.A., Reusken A.: A Stokes interface problem. stability, error estimates and a solver. In: Neittaanmäki P., et al. (eds.) Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004Google Scholar
  19. 19.
    Peters J., Reichelt V., Reusken A. (2005) Fast iterative solvers for discrete Stokes equations. SIAM J. Sci. Comput. 27, 646–666zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Shibata Y., Shimizu S. (2003) On a resolvent estimate of the interface problem for the Stokes system in a bounded domain. J. Differential Equations 191, 408–444zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Sussman M., Smereka P., Osher S. (1994) A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys., 114, 146–159zbMATHCrossRefGoogle Scholar
  22. 22.
    Tornberg A.-K., Engquist B. (2000) A finite element based level-set method for multiphase flow applications. Comput. Visual. Sci., 3, 93–101zbMATHCrossRefGoogle Scholar
  23. 23.
    Turek S. (1999) Efficient Solvers for Incompressible Flow Problems. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  24. 24.
    Verfürth R. (1984) Error estimates for a mixed finite element approximation of the Stokes problem. RAIRO Numer. Anal. 18, 175–182zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Maxim A. Olshanskii
    • 1
  • Jörg Peters
    • 2
  • Arnold Reusken
    • 2
  1. 1.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.Institut für Geometrie und Praktische MathematikRWTH-AachenAachenGermany

Personalised recommendations